Previous |  Up |  Next

Article

Keywords:
octonions; $E_6$; exceptional Lie groups; Dirac equation
Summary:
Attempts to extend our previous work using the octonions to describe fundamental particles lead naturally to the consideration of a particular real, noncompact form of the exceptional Lie group $E_6$, and of its subgroups. We are therefore led to a description of $E_6$ in terms of $3\times 3$ octonionic matrices, generalizing previous results in the $2\times 2$ case. Our treatment naturally includes a description of several important subgroups of $E_6$, notably $G_2$, $F_4$, and (the double cover of) $SO(9,1)$. An interpretation of the actions of these groups on the squares of 3-component Cayley spinors is suggested.
References:
[1] Baez J. C.: The octonions. Bull. Amer. Math. Soc. 39 (2002), 145–205. DOI 10.1090/S0273-0979-01-00934-X | MR 1886087 | Zbl 1026.17001
[2] Cartan É.: Le principe de dualité et la théorie des groupes simple et semi-simples. Bull. Sci. Math. 49 (1925), 361–374.
[3] Conway J.H., Smith D.A.: On Quaternions and Octonions. A.K. Peters, Natick, MA, 2003. MR 1957212 | Zbl 1098.17001
[4] Dray T., Manogue C.A.: The exceptional Jordan eigenvalue problem. Internat. J. Theoret. Phys. 38 (1999), 2901–2916; {\tt ({math-ph/9910004})}. DOI 10.1023/A:1026699830361 | MR 1764984 | Zbl 0951.15008
[5] Dray T., Manogue C.A.: Quaternionic spin. in Clifford Algebras and their Applications in Mathematical Physics, (R. Abłamowicz and B. Fauser, eds.), Birkhäuser, Boston, 2000, pp. 29–46; {\tt ({hep-th/9910010})}. MR 1783522 | Zbl 1160.81396
[6] Fairlie D.B., Corrigan E.: Private communication. 1986.
[7] Freudenthal H.: Lie groups in the foundations of geometry. Adv. Math. 1 (1964), 145–190. DOI 10.1016/0001-8708(65)90038-1 | MR 0170974 | Zbl 0125.10003
[8] Harvey F.R.: Spinors and Calibrations. Academic Press, Boston, 1990. MR 1045637 | Zbl 0694.53002
[9] Jacobson N.: Some Groups of Transformations defined by Jordan Algebras, II. J. Reine Angew. Math. 204 (1960), 74–98. MR 0159849 | Zbl 0142.26401
[10] Manogue C.A., Dray T.: Dimensional reduction. Mod. Phys. Lett. A14 (1999), 99–103; {\tt ({hep-th/9807044})}. DOI 10.1142/S0217732399000134 | MR 1674805
[11] Manogue C.A., Dray T.: Octonionic Möbius transformations. Int. J. Mod. Phys. A14 (1999), 1243–1255; {\tt ({math-ph/9905024})}. MR 1703958
[12] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics. in Proceedings of QUANTUM (York, 2008), J. Phys.: Conference Series (JPCS)(to appear).
[13] Manogue C.A., Schray J.: Finite Lorentz transformations, automorphisms, and division algebras. J. Math. Phys. 34 (1993), 3746–3767; {\tt ({hep-th/9302044})}. DOI 10.1063/1.530056 | MR 1230549 | Zbl 0797.53075
[14] Paige L.J.: Jordan algebras. in Studies in Modern Algebra (A.A. Albert, ed.), Prentice Hall, Englewood Cliffs, NJ, 1963, pp. 144–186. Zbl 0196.30803
[15] Ramond P.: Introduction to exceptional Lie groups and algebras. Caltech preprint CALT-68-577, 1976.
[16] Schafer R.D.: An Introduction to Nonassociative Algebras. Academic Press, New York, 1966 (reprinted by Dover Publications, 1995). MR 0210757 | Zbl 0145.25601
[17] Schray J.: Octonions and supersymmetry. PhD thesis, Oregon State University, 1994.
[18] Schray J.: The general classical solution of the superparticle. Class. Quant. Grav. 13 (1996), 27–38; {\tt ({hep-th/9407045})}. DOI 10.1088/0264-9381/13/1/004 | MR 1371012 | Zbl 0999.81500
[19] Sudbery A.: Division algebras, (pseudo)orthogonal groups and spinors. J. Phys. A17 (1984), 939–955. MR 0743176 | Zbl 0544.22010
[20] Wangberg A.: The structure of $E_6$. PhD thesis, Oregon State University, 2007, {\tt ({arXiv:0711.3447})}. MR 2711269
[21] Wangberg A., Dray T.: Visualizing Lie subalgebras using root and weight diagrams. Loci 2, February 2009; {\tt ({mathdl.maa.org/mathDL/23/?pa=content&sa=viewDocument&nodeId=3287})}.
Partner of
EuDML logo