[2] Cartan É.: Le principe de dualité et la théorie des groupes simple et semi-simples. Bull. Sci. Math. 49 (1925), 361–374.
[5] Dray T., Manogue C.A.:
Quaternionic spin. in Clifford Algebras and their Applications in Mathematical Physics, (R. Abłamowicz and B. Fauser, eds.), Birkhäuser, Boston, 2000, pp. 29–46; {\tt ({hep-th/9910010})}.
MR 1783522 |
Zbl 1160.81396
[6] Fairlie D.B., Corrigan E.: Private communication. 1986.
[9] Jacobson N.:
Some Groups of Transformations defined by Jordan Algebras, II. J. Reine Angew. Math. 204 (1960), 74–98.
MR 0159849 |
Zbl 0142.26401
[11] Manogue C.A., Dray T.:
Octonionic Möbius transformations. Int. J. Mod. Phys. A14 (1999), 1243–1255; {\tt ({math-ph/9905024})}.
MR 1703958
[12] Manogue C.A., Dray T.: Octonions, $E_6$, and particle physics. in Proceedings of QUANTUM (York, 2008), J. Phys.: Conference Series (JPCS)(to appear).
[14] Paige L.J.:
Jordan algebras. in Studies in Modern Algebra (A.A. Albert, ed.), Prentice Hall, Englewood Cliffs, NJ, 1963, pp. 144–186.
Zbl 0196.30803
[15] Ramond P.: Introduction to exceptional Lie groups and algebras. Caltech preprint CALT-68-577, 1976.
[16] Schafer R.D.:
An Introduction to Nonassociative Algebras. Academic Press, New York, 1966 (reprinted by Dover Publications, 1995).
MR 0210757 |
Zbl 0145.25601
[17] Schray J.: Octonions and supersymmetry. PhD thesis, Oregon State University, 1994.
[19] Sudbery A.:
Division algebras, (pseudo)orthogonal groups and spinors. J. Phys. A17 (1984), 939–955.
MR 0743176 |
Zbl 0544.22010
[20] Wangberg A.:
The structure of $E_6$. PhD thesis, Oregon State University, 2007, {\tt ({arXiv:0711.3447})}.
MR 2711269
[21] Wangberg A., Dray T.: Visualizing Lie subalgebras using root and weight diagrams. Loci 2, February 2009; {\tt ({mathdl.maa.org/mathDL/23/?pa=content&sa=viewDocument&nodeId=3287})}.