Previous |  Up |  Next

Article

Keywords:
ternary multiplication; divison algebras; Leech lattice; sums of powers; quark and lepton spinors
Summary:
In which the binary product algebra of complex numbers, {\bf C}, is generalized to a ternary product algebra, $\mathbf{C}_{3}$.
References:
[1] Conway J.H., Sloane N.J.A.: Sphere Packings, Lattices and Groups. second edition, Springer, New York, 1993. MR 1194619 | Zbl 0915.52003
[2] Wilson R.A.: Octonions and the Leech lattice. J. Algebra 322 (2009), no. 6, 2186–2190. DOI 10.1016/j.jalgebra.2009.03.021 | MR 2542837
[3] Cederwall M., Preitschopf C.R.: $S^7$ and $\widehat{S^7}$. Comm. Math. Phys 167 (1995), 373–393. MR 1316511
[4] Dixon G.M.: Octonion XY-Product. hep-th 9503053.
[5] Dixon G.M.: Integral Octonions, Octonion Multiplication, and the Leech Lattice. http://www.7stones.com/Homepage/8Lattice.pdf
[6] Dixon G.M.: Hyperalgebra. http://www.7stones.com/Homepage/24x24x24.pdf
[7] Dixon G.M.: Division Algebras: Family Replication. J. Math. Phys. 45 (2004), 3878. DOI 10.1063/1.1786682 | MR 2095677 | Zbl 1071.81050
Partner of
EuDML logo