Previous |  Up |  Next

Article

Title: Two operations of merging and splitting components in a chain graph (English)
Author: Studený, Milan
Author: Roverato, Alberto
Author: Štěpánová, Šárka
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 2
Year: 2009
Pages: 208-248
Summary lang: English
.
Category: math
.
Summary: In this paper we study two operations of merging components in a chain graph, which appear to be elementary operations yielding an equivalent graph in the respective sense. At first, we recall basic results on the operation of feasible merging components, which is related to classic LWF (Lauritzen, Wermuth and Frydenberg) Markov equivalence of chain graphs. These results are used to get a graphical characterisation of factorisation equivalence of classic chain graphs. As another example of the use of this operation, we derive some important invariants of LWF Markov equivalence of chain graphs. Last, we recall analogous basic results on the operation of legal merging components. This operation is related to the so-called strong equivalence of chain graphs, which includes both classic LWF equivalence and alternative AMP (Andersson, Madigan and Perlman) Markov equivalence. (English)
Keyword: chain graph
Keyword: essential graph
Keyword: factorisation equivalence
Keyword: feasible merging components
Keyword: legal merging components
Keyword: strong equivalence
MSC: 05C90
MSC: 62H05
MSC: 68T30
idZBL: Zbl 1252.62058
idMR: MR2518149
.
Date available: 2010-06-02T18:28:32Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140074
.
Reference: [1] S. A. Andersson, D. Madigan, and M. D. Perlman: An alternative Markov property for chain graphs.In: Uncertainty in Artificial Intelligence, Proc. Twelfth Conference (F. Jensen and E. Horvitz, eds.), Morgan Kaufmann, San Francisco 1996, pp. 40–48. MR 1617123
Reference: [2] S. A. Andersson, D. Madigan, and M. D. Perlman: A characterization of Markov equivalence classes for acyclic digraphs.Ann. Statist. 25 (1997), 505–541. MR 1439312
Reference: [3] S. A. Andersson, D. Madigan, and M. D. Perlman: On the Markov equivalence of chain graphs, undirected graphs and acyclic digraphs.Scand. J. Statist. 24 (1997), 81–102. MR 1436624
Reference: [4] S. A. Andersson, D. Madigan, and M. D. Perlman: Alternative Markov properties for chain graphs.Scand. J. Statist. 28 (2001), 33–85. MR 1844349
Reference: [5] D. M. Chickering: A transformational characterization of equivalent Bayesian network structures.In: Uncertainty in Artificial Intelligence, Proc. Eleventh Conference (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco 1995, pp. 87–98. MR 1615012
Reference: [6] M. Frydenberg: The chain graph Markov property.Scand. J. Statist. 17 (1990), 333–353. Zbl 0713.60013, MR 1096723
Reference: [7] S. L. Lauritzen and N. Wermuth: Mixed Interaction Models.Research Report No. R-84-8, Inst. Elec. Sys., University of Aalborg 1984.
Reference: [8] S. L. Lauritzen and N. Wermuth: Graphical models for association between variables, some of which are qualitative and some quantitative.Ann. Statist. 17 (1989), 31–57. MR 0981437
Reference: [9] S. L. Lauritzen: Graphical Models.Clarendon Press, Oxford 1996. Zbl 1055.62126, MR 1419991
Reference: [10] J. Pearl: Probabilistic Reasoning in Intelligent Systems.Morgan Kaufmann, San Mateo 1988. Zbl 0746.68089, MR 0965765
Reference: [11] A. Roverato: A unified approach to the characterisation of equivalence classes of DAGs, chain graphs with no flags and chain graphs.Scand. J. Statist. 32 (2005), 295–312. MR 2188675
Reference: [12] A. Roverato and M. Studený: A graphical representation of equivalence classes of AMP chain graphs.J. Machine Learning Research 7 (2006), 1045–1078. MR 2274397
Reference: [13] Š. Štěpánová: Equivalence of Chain Graphs (in Czech).Diploma Thesis, Charles University, Prague 2003.
Reference: [14] M. Studený: A recovery algorithm for chain graphs.Internat. J. Approx. Reasoning 17 (1997), 265–293. MR 1462716
Reference: [15] M. Studený: Characterization of essential graphs by means of the operation of legal merging of components.Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 12 (2004), 43–62. MR 2058946
Reference: [16] M. Studený and J. Vomlel: Transition between graphical and algebraic representatives of Bayesian network models.In: Proc. 2nd European Workshop on Probabilistic Graphical Models (P. Lucas ed.), Leiden 2004, pp. 193–200.
Reference: [17] M. Studený: Probabilistic Conditional Independence Structures.Springer-Verlag, London 2005.
Reference: [18] T. Verma and J. Pearl: Equivalence and synthesis of causal models.In: Uncertainty in Artificial Intelligence, Proc. Sixth Conference (P. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, eds.), North-Holland, Amsterdam 1991, pp. 255–270.
Reference: [19] M. Volf and M. Studený: A graphical characterization of the largest chain graphs.Internat. J. Approx. Reasoning 20 (1999), 209–236. MR 1685080
.

Files

Files Size Format View
Kybernetika_45-2009-2_3.pdf 1.207Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo