Previous |  Up |  Next

Article

Title: Hierarchical models, marginal polytopes, and linear codes (English)
Author: Kahle, Thomas
Author: Wenzel, Walter
Author: Ay, Nihat
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 45
Issue: 2
Year: 2009
Pages: 189-207
Summary lang: English
.
Category: math
.
Summary: In this paper, we explore a connection between binary hierarchical models, their marginal polytopes, and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them. (English)
Keyword: 0/1 polytopes
Keyword: linear codes
Keyword: hierarchical models
Keyword: exponential families
MSC: 52B11
MSC: 60C05
MSC: 94B05
idZBL: Zbl 1167.94340
idMR: MR2518148
.
Date available: 2010-06-02T18:27:22Z
Last updated: 2013-09-21
Stable URL: http://hdl.handle.net/10338.dmlcz/140070
.
Reference: [1] N. Ay and A. Knauf: Maximizing multi-information.Kybernetika 42 (2006), 517–538. MR 2283503
Reference: [2] S. Amari: Information geometry on hierarchy of probability distributions.IEEE Trans. Inform. Theory 47 (2001), 1701–1711. Zbl 0997.94009, MR 1842511
Reference: [3] E. Caianiello: Synthesis of boolean nets and time behaviour of a general mathematical neuron.Biol. Cybernet. 18 (1975), 111–117. MR 0530379
Reference: [4] E. Caianiello: Neuronic equations revisited and completely solved.In: Brain Theory (G. Palm and A. Aertsen, eds.), Springer, Berlin 1986. MR 0847249
Reference: [5] I. Csiszár: $I$-divergence geometry of probability distributions and minimization problems.Ann. Probab. 3 (1975), 146–158. MR 0365798
Reference: [6] M. M. Deza and M. Laurent: Geometry of Cuts and Metrics.Algorithms and Combinatorics. Springer, Berlin 1997. MR 1460488
Reference: [7] J. N. Darroch and T. P. Speed: Additive and multiplicative models and interactions.Ann. Statist. 11 (1983), 3, 724–738. MR 0707924
Reference: [8] J. Feldman, M. Wainwright, and D. R. Karger: Using linear programming to decode linear codes.IEEE Trans. Inform. Theory 51 (2005), 3, 954–972. MR 2237962
Reference: [9] H.-O. Georgii: Gibbs Measures and Phase Transitions (de Gruyter Studies in Mathematics 9).Walter de Gruyter, Berlin 1988. MR 0956646
Reference: [10] E. Gawrilow and M. Joswig: polymake: a framework for analyzing convex polytopes.Polytopes – Combinatorics and Computation, pp. 43–47. Birkhäuser, Basel 2000. MR 1785292
Reference: [11] S. Hoşten and S. Sullivant: Gröbner bases and polyhedral geometry of reducible and cyclic models.J. Combin. Theory Ser. A 100 (2002), 2, 277–301. MR 1940337
Reference: [12] T. Kahle and N. Ay: Support sets of distributions with given interaction structure.In: Proc. WUPES 2006, 2006.
Reference: [13] T. Kahle: Neighborliness of marginal polytopes.2008. submitted, arXiv:0809.0786.
Reference: [14] S. Kullback: Information Theory and Statistics.Dover, New York 1968. Zbl 0897.62003, MR 1461541
Reference: [15] S. L. Lauritzen: Graphical Models.(Oxford Statistical Science Series.) Oxford University Press, 1996. Zbl 1055.62126, MR 1419991
Reference: [16] J. H. van Lint: Introduction to Coding Theory.GTM. Third edition. Springer, Berlin 1999. Zbl 0936.94014, MR 1664228
Reference: [17] W. Wenzel: Regular simplices inscribed into the cube and exhibiting a group structure.J. Combin. Math. Combin. Comput. 59 (2006), 213–220. Zbl 1127.52012, MR 2277349
Reference: [18] G. Winkler: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods.Second edition. Springer, Berlin 2003. Zbl 1008.68147, MR 1950762
Reference: [19] M. J. Wainwright and M. I. Jordan: Variational inference in graphical models: The view from the marginal polytope.In: Allerton Conference on Communication, Control, and Computing, 2003.
Reference: [20] G. M. Ziegler: Lectures on Polytopes.GTM 142, Springer, Berlin 1994. Zbl 0823.52002, MR 1311028
Reference: [21] G. M. Ziegler: Lectures on 0/1 polytopes.In: Polytopes – Combinatorics and Computation (G. Kalai and G. M. Ziegler, eds.), pp. 1–41. Birkhäuser, Basel 2000. Zbl 0966.52012, MR 1785291
.

Files

Files Size Format View
Kybernetika_45-2009-2_2.pdf 1.414Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo