Previous |  Up |  Next

Article

References:
[A] Anosov, D.: Smooth dynamical systems. Introductory article. Amer. Math. Soc. Transl. 125 (1985), 1–20. Zbl 0569.58025
[Ch] Chazy, J.: Sur les singularités impossible du problème des $n$ corps. C. R. Acad. Sci. Paris 170 (1920), 575–577.
[D1] Devaney, R.: Triple collisions in the planar isosceles three-body problem. Invent. Math. 60 (1980), 249–267. MR 0586428
[D2] Devaney, R.: Singularities in classical mechanical systems. Basel and Boston, MA, Birkhäuser 1981. MR 0633766 | Zbl 0467.70016
[G] Gerver, J.: The existence of pseudocollisions in the plane. J. Differential Equations 89 (1991), 1–68. MR 1088334 | Zbl 0721.70007
[L] Littlewood, J.: Some problems in real and complex analysis. Boston, MA, Heath 1969. MR 0244463
[McG1] McGehee, R.: Von Zeipel’s theorem on singularities in celestial mechanics. Exposition. Math. 4 (1986), 335–345. MR 0867962 | Zbl 0622.70005
[McG2] McGehee, R.: Triple collisions in the collinear three-body problem. Invent. Math. 29 (1974), 191–227. MR 0359459
[MM] Mather, J., McGehee, R.: Solutions of the collinear four-body problem which become unbounded in finite time. Lecture Notes Phys. 38 (1975), 573–597. MR 0495348 | Zbl 0331.70005
[Mo1] Moekel, R.: Orbits of the three-body problem which pass infinitely close to triple collision. Amer. J. Math.
[Mo2] Moekel, R.: Heteroclinic phenomena in the isosceles three-body problem. SIAM J. Math. Anal. 15 (1984). MR 0755848
[MS] Marchal, C., Saari, D. G.: On the final evolution of the $n$-body problem. J. Differential Equations 20 (1976), 150–186. MR 0416150 | Zbl 0336.70010
[Pa] Painlevé, P.: Leçons sur la théorie analytic des équations différentielles. Paris, Hermann 1897.
[P1] Pollard, H.: A mathematical introduction to celestial mechanics. Carus Monograph No. 18, Math. Assoc. Amer. (1976). MR 0434057
[P2] Pollard, H.: Gravitational systems. J. Math. Mech. 17 (1967), 601–612. MR 0261826 | Zbl 0159.26102
[PS1] Pollard, H., Saari, D. G.: Singularities of the $n$-body problem 1. Arch. Rational Mech. Math. 30 (1968), 263–269. MR 0231565
[PS2] Pollard, H., Saari, D. G.: Singularities of the $n$-body problem 2. Academic Press 1970, 255–259. MR 0277853
[R] Robinson, C.: Dynamical systems. Boca Raton, FL, CRC Press, Inc., 1995. MR 1396532 | Zbl 0853.58001
[S1] Saari, D. G.: Singularities of the Newtonian $n$-body problem. Ph. D. Dissertation, Purdue University 1967.
[S2] Saari, D. G.: Improbability of collisions in Newtonian gravitational systems II. Trans. Amer. Math. Soc. 181 (1973), 351–368. MR 0321386 | Zbl 0283.70007
[S3] Saari, D. G.: Singularities and collisions of Newtonian gravitational systems. Arch. Rational Mech. Math. 49 (1973), 311–320. MR 0339596 | Zbl 0253.70010
[S4] Saari, D. G.: A global existence theorem for the four-body problem of Newtonian mechanics. J. Differential Equations 26 (1977), 80–111. MR 0478863 | Zbl 0353.70008
[Se] Siegel, C. L.: Der Dreierstoss. Ann. of Math. 42 (1941), 127–168. MR 0003736 | Zbl 0024.36404
[Si] Simó, C.: Analysis of triple-collision in the isosceles problem. New York, Marcel Dekker 1980. MR 0640127
[Sp] Sperling, H. J.: On the real singularities of the $n$-body problem. J. Reine Angew. Math. 245 (1970), 15–40. MR 0290630 | Zbl 0207.23301
[Su] Sundman, K.: Le problème des trois corps. Acta Soc. Sci. Fenn. 35 (1909).
[SX] Saari, D. G., Xia, Z.: Oscillatory and superhyperbolic solutions in Newtonian systems. J. Differential Equations 82 (1989), 342–355. MR 1027973
[VZ] Zeipel, H. von: Sur les singularités du problème des $n$ corps. Ark. Mat. Astronom. Fys. 4 (1904).
[W] Wintner, A.: The analytical foundations of celestial mechanics. Princeton, NJ, Princeton University Press 1947. MR 0005824 | Zbl 0041.59006
[X1] Xia, Z.: The existence of non-collision singularities in Newtonian systems. Ph. D. Dissertation, Northwestern University 1988.
[X2] Xia, Z.: The existence of non-collision singularities in Newtonian systems. Ann. of Math. 135 (1992), 411–468. MR 1166640
Partner of
EuDML logo