Article
Keywords:
Baker method; Pell equations; recurrence sequences
Summary:
A positive $n$ is called a balancing number if \[1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r).\] We prove that there is no balancing number which is a term of the Lucas sequence.
References:
[1] Baker A., Davenport H.:
The equations $3x^2-2=y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford (2) 20 (1969), 129–137.
MR 0248079
[2] Baker A., Wüstholz G.:
Logarithmic forms and group varieties. J. reine angew. Math., 442 (1993), 19–62.
MR 1234835
[3] Behera A., Panda G. K.:
On the square roots of triangular numbers. Fibonacci Quarterly, 37 No. 2 (1999), 98–105.
MR 1690458 |
Zbl 0962.11014
[4] Ferguson D. E.: Letter to the editor. Fibonacci Quarterly, 8 (1970), 88–89.
[6] Shorey T. N., Tijdeman R.:
Exponential diophantine equations. Cambridge University Press, (1986).
MR 0891406 |
Zbl 0606.10011
[7] Szalay L.: A note on the practical solution of simultaneous Pell type equations. submitted to Comp. Math.