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Lucas balancing numbers

Kálmán Liptai

Abstract. A positive n is called a balancing number if

1 + 2 + · · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r).

We prove that there is no balancing number which is a term of the Lucas
sequence.

1. Introduction
The sequence {Rn}∞n=0 = R(A,B,R0, R1) is called a second order linear recurrence
if the recurrence relation

Rn = ARn−1 +BRn−2 (n > 1)

holds for its terms, where A, B 6= 0, R0 and R1 are fixed rational integers and
|R0| + |R1| > 0. The polynomial x2 −Ax −B is called the companion polynomial
of the second order linear recurrence sequence R = R(A,B,R0, R1). The zeros of
the companion polynomial will be denoted by α and β. Using this notation, as it
is well known, we get

Rn =
aαn − bβn

α− β
,

where a = R1 −R0β and b = R1 −R0α (see [6]).
A positive integer n is called a balancing number [3] if

1 + 2 + · · · + (n− 1) = (n+ 1) + (n+ 2) + · · · + (n+ r)

for some r ∈ N. Here r is called the balancer corresponding to the balancing number
n. For example 6 and 35 are balancing numbers with balancers 2 and 14. In a joint
paper A. Behera and G. K. Panda [3] proved that that the balancing numbers fulfil
the following recurrence relation

Bn+1 = 6Bn −Bn−1 (n > 1)
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where B0 = 1 and B1 = 6. In [5] we proved that there is no Fibonacci balancing
number. We call a balancing number Lucas balancing number if it is a Lucas
number, too. In the next section we prove that there are no Lucas balancing
numbers. In the prove we use the same method as in [5]. Using an other method
Szalay in [7] got the same result.

2. Lucas balancing numbers

In [5] we proved that the balancing numbers are solutions of a Pell’s equation. We
proved the following theorem.

Theorem 1. The terms of the second order linear recurrence B(6,−1, 1, 6) are the
solutions of the equation

z2 − 8y2 = 1 (1)

for some integer z.

In the proof of our main result we need the following theorem of P. E. Ferguson
[4].

Theorem 2. The only solutions of the equation

y2 − 5x2 = ±4 (2)

are y = ±Ln, x = ±Fn (n = 0, 1, 2, . . .), where Ln and Fn are the nth terms of the
Lucas and Fibonacci sequences, respectively.

Next we use the method of A. Baker and H. Davenport and we prove that
there are finitely many common solutions of the Pell’s equations (1) and (2). In
the proof we use the following theorem of A. Baker and H. Wüstholz [2].

Theorem 3. Let α1, . . . , αn be algebraic numbers not 0 or 1, and let

Λ = b1 logα1 + · · · + bn logαn,

where b1, . . . , bn are rational integers not all zeroes.
We suppose that B = max(|b1|, . . . , |bk|, e) and Ai = max{(H(αi), e} (i =

1, 2, . . . n). Assume that the field K generated by α1, α2, . . . αn over the rationals
has degree at most d. If Λ 6= 0 then

log |Λ| > −(16nd)2(n+2) logA1 logA2 . . . logAn logB.

(H(α) is equal to the maximum of absolute values of the coefficients of the minimal
defining polynomial of α.)

The following theorem is the main result of this paper.

Theorem 4. There is no Lucas balancing number.

Proof. First we show that there are finitely many common solutions of the equations
(1) and (2). The general solution of equation (1) is given by

z +
√

8y = (3 +
√

8)n n = 0, 1, 2, . . . (3)

The equations (2) can be written as

(y + x
√

5)(y − x
√

5) = 4 (4)
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and

(y + x
√

5)(y − x
√

5) = −4. (5)

If we put

y + x
√

5 = (y0 + x0

√
5)(9 + 4

√
5)m

where m ≥ 0, it is easily verified (by combining this equation with its conjugate)
that y0 is always positive but x0 is negative if m is large. Hence we can choose m
so that x0 > 0; but if x1 is defined by

y0 + x0

√
5 = (y1 + x1

√
5)(9 + 4

√
5)

then x1 ≤ 0. Since

y0 + x0

√
5 = (9y1 + 20x1) + (9x1 + 4y1)

√
5

we have y0 = 9y1 + 20x1 and x0 = 9x1 + 4y1. From the previous equations we have
x1 = 9x0 − 4y0 and x0 ≤ 4y0

9 . Using the positive part of equation (2) we have

y2
0 − 4 = 5x2

0 ≤ 80

81
y2

0 .

Hence y0 = 3, 7, 18 and x0 = 1, 3, 8, respectively. Thus the general solution of the
positive part of equation (2) is given by

y + x
√

5 = (3 +
√

5)(9 + 4
√

5)m (6)

y + x
√

5 = (7 + 3
√

5)(9 + 4
√

5)m (7)

y + x
√

5 = (18 + 8
√

5)(9 + 4
√

5)m (8)

where m = 0, 1, 2 . . .
Using the same method as before with the negative part of equation (2), we

find that y1 = 9y0 − 20x0 ≤ 0 (in this case x0 is always positive), whence y2
0 =

5x2
0 − 4 ≤ 400

81 x
2
0, so that x0 = 1, 2, 5 and y0 = 1, 4, 11, respectively. Thus the

general solution of the negative part of equation (2) is given by

y + x
√

5 = (1 +
√

5)(9 + 4
√

5)m (9)

y + x
√

5 = (4 + 2
√

5)(9 + 4
√

5)m (10)

y + x
√

5 = (11 + 5
√

5)(9 + 4
√

5)m (11)

where m = 0, 1, 2, . . . We are looking for the common solutions of the equation (6),
(7), (8), (9), (10), (11) with the equations (3). Using equation (3), (6) and their
conjugates we have

2y =
(3 +

√
8)n

√
8

− (3 −
√

8)n

√
8

= (3 +
√

5)(9 + 4
√

5)m + (3 −
√

5)(9 − 4
√

5)m

and so

(3 +
√

8)n

√
8

− (3 −
√

8)n

√
8

=

(3 +
√

5)(9 + 4
√

5)m + (3 −
√

5)(9 − 4
√

5)m

(12)
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Putting

Q =
(3 +

√
8)n

√
8

, P = (3 +
√

5)(9 + 4
√

5)m,

in equation (12) we obtain

Q− 1

8
Q−1 = P − 4P−1.

Since

Q− P =
1

8
Q−1 − 4P−1 < 4(Q−1 − P−1) = 4

P −Q

QP

we have that Q < P . Obviously P > 90 and

P −Q = 4P−1 − 1

8
Q−1 < 4P−1.

It follows that

0 < log
P

Q
= − log

(

1 − P −Q

P

)

< 4P−2 + 16P−4

< 4.16P−2 <
0.00052

(9 + 4
√

5)2m
.

(13)

Morover

0 < log
P

Q
= m log(9 + 4

√
5) − n log(3 +

√
8) + log(3 +

√
5)
√

8 = Λ.

Since P > Q we have 4m > n.
We apply Theorem 3 with n = 3, α1 = 9 + 4

√
5, α2 = 3 +

√
8 and α3 = (3 +√

5)
√

8. The equations satisfied by α1, α2, α3 are α2
1−18α1+1 = 0, α2

2−6α2 +1 = 0
and α3−224α2

3+1024 = 0. In the previous equations we haveA1 = 18, A2 = 6, A3 =
1024. Using Theorem 3 we have

log |Λ| > −(16 × 3 × 4)10 log 18 log 6 log 1024 log 4m.

We use that

0.00052
(

(9 + 4
√

5)2
)−m

< exp(−5.77m)

and we have

m <
1

5.77
(16 × 3 × 4)10 log 18 log 6 log 1024 log 4m < 1024 log 4m.

Thus we have m < 1026. Using this method we get the same result for m in
the other cases, too. In those cases α1 = 9 + 4

√
5, α2 = 3 +

√
8 as before but

α
(2)
3 = (7+3

√
5)
√

8, α
(3)
3 = (18+8

√
5)
√

8, α
(4)
3 = (1+

√
5)
√

8, α
(5)
3 = (4+2

√
5)
√

8,

and α
(6)
3 = (11 + 5

√
5)
√

8. In these cases A
(2)
3 = 1504, A

(3)
3 = 10304, A

(4)
3 = 1024,

A
(5)
3 = 1024 and A

(6)
3 = 3936.

This upper bound is treatable. Using the computer algebraic program package
Maple we can show easily that there is no Lucas balancing number. �
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