Previous |  Up |  Next

Article

Keywords:
class $\operatorname{Lip} (\alpha,p)$; $L^p$-norm; trigonometric approximation
Summary:
We show that the same degree of approximation as in the theorems proved by L. Leindler [Trigonometric approximation in $L^p$-norm, J. Math. Anal. Appl. 302 (2005), 129--136] and P. Chandra [Trigonometric approximation of functions in $L^p$-norm, J. Math. Anal. Appl. 275 (2002), 13--26] is valid for a more general class of lower triangular matrices. We also prove that these theorems are true under weakened assumptions.
References:
[1] Chandra P.: Approximation by Nörlund operators. Mat. Vestnik 38 (1986), 263--269. MR 0870945 | Zbl 0655.42002
[2] Chandra P.: Functions of classes $L^p$ and $Lip (\alpha ,p)$ and their Riesz means. Riv. Mat. Univ. Parma (4) 12 (1986), 275--282. MR 0913050 | Zbl 0853.42002
[3] Chandra P.: A note on degree of approximation by Nörlund and Riesz operators. Mat. Vestnik 42 (1990), 9--10. MR 1096908 | Zbl 0725.42004
[4] Chandra P.: Trigonometric approximation of functions in $L^p$-norm. J. Math. Anal. Appl. 275 (2002), 13--26. DOI 10.1016/S0022-247X(02)00211-1 | MR 1941769
[5] Leindler L.: Trigonometric approximation in $L^p$-norm. J. Math. Anal. Appl. 302 (2005), 129--136. DOI 10.1016/j.jmaa.2004.07.049 | MR 2107350
[6] Mohapatra R.N., Russell D.C.: Some direct and inverse theorem in approximation of functions. J. Austral. Math. Soc. (Ser. A) 34 (1983), 143--154. DOI 10.1017/S144678870002317X | MR 0687320
[7] Sahney B.N., Rao V.V.: Error bounds in the approximation of functions. Bull. Austral. Math. Soc. 6 (1972), 11--18. DOI 10.1017/S0004972700044208 | MR 0293316 | Zbl 0229.42009
[8] Quade E.S.: Trigonometric approximation in the mean. Duke Math. J. 3 (1937), 529--542. DOI 10.1215/S0012-7094-37-00342-9 | MR 1546008 | Zbl 0017.20501
Partner of
EuDML logo