[2] BLOUNT K.-TSINAKIS C.:
The structure of residuated lattices. Intеrnat. J. Algеbra Comput. 13 (2003), 437-461.
MR 2022118 |
Zbl 1048.06010
[3] CIGNOLI R. L. O.-D'OТТAVIANO I. M. L.-MUNDICI D.:
Algebraic Foundation of Many-valued Reasoning. Kluwеr Acad. Publ., Dordrecht-Boston-London, 2000.
MR 1786097
[4] DVUREČENSKIJ A.-RACHŮNEK J.:
Probabilistic averaging in bounded commutative residuated $\ell$-monoids. Discrete Math. 306 (2006), 1317-1326
MR 2237716 |
Zbl 1105.06011
[5] GALAТOS M.- ТSINAKIS C.:
Generalized MV-algebras. J. Algеbra 283 (2005), 254-291.
MR 2102083
[7] HARLENDEROVÁ M.-RACHŮNEK J.:
Modal operators on MV-algebras. Math. Bohem. 131 (2006), 39-48.
MR 2211002 |
Zbl 1112.06014
[8] JIPSEN P.-ТSINAKIS C.:
A survey of residuated lattices. In: Ordеrеd Algеbraic Structurеs (J. Martinеz, еd.), Kluwеr Acad. Publ., Dordrеcht, 2002, pp. 19-56.
MR 2083033 |
Zbl 1070.06005
[9] KÜHR J.:
Dually Residuated Lattice-Ordered Monoids. Ph.D. Тhеsis, Palacký Univ. Olomouc, 2003.
Zbl 1141.06014
[10] MACNAB D. S.:
Modal operators on Heyting algebras. Algebra Universalis 12 (1981), 5-29.
MR 0608645 |
Zbl 0459.06005
[11] RACHŮNEK J.:
$DR\ell$-semigroups and $MV$-algebras. Czechoslovak Math. J. 48 (1998), 365-372.
MR 1624268
[12] RACHŮNEK J.:
MV-algebras are categorically equivalent to a class of $DR\ell_{1(i)}-semi-groups. Math. Bohem. 123 (1998), 437-441.
MR 1667115
[13] RACHŮNEK J.:
A duality between algebras of basic logic and bounded representable $DR\ell$-monoids. Math. Bohem. 126 (2001), 561-569.
MR 1970259
[14] RACHŮNEK J.-ŠALOUNOVÁ D.:
Local bounded commutative residuated t-monoids. Czechoslovak Math. J. 57 (2007), 395-406
MR 2309973
[15] RACHŮNEK J.- SLEZÁK V.:
Negation in bounded commutative DRl-monoids. Czechoslovak Math. J. 56 (2006), 755-763
MR 2291772
[16] SWAMY K. L. N.:
Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114.
MR 0183797 |
Zbl 0138.02104