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MODAL OPERATORS ON BOUNDED 
COMMUTATIVE RESIDUATED ^-MONOIDS 

JlRI RACHUNEK* — DANA SALOUNOVA** 

(Communicated by Anatolij Dvurecenskij) 

A B S T R A C T . Bounded commu ta t ive residua ted lattice ordered monoids ( / ^ -mo­
noids) are a common generalization of, e.g., Heyt ing algebras and BL-algebras, 
i.e., algebras of intuitionistic logic and basic fuzzy logic, respectively. Modal op­
erators (special cases of closure operators) on Heyt ing algebras were studied in 
[MacNAB, D. S.: Modal operators on Heyting algebras, Algebra Universalis 12 
(1981), 5-29] and on MV-algebras in [HARLENDEROVA, M.—RACHUNEK, J.: 
Modal operators on MV-algebras, Math. Bohem. 1 3 1 (2006), 39-48]. In the pa­
per we generalize the notion of a moda l operator for general bounded commutat ive 
B£-monoids and investigate their properties also for certain derived algebras. 
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Mathematical Institute 

Slovak Academy of Sciences 

Commutative residuated lattice ordered monoids (R£-monoids) are duals to 
commutative Dit^-monoids which were introduced by S w a m y [16] as a com­
mon generalization of Abelian lattice ordered groups and Brouwerian eilgebras. 
By [11], [12], [13], also algebras of logics behind fuzzy reasoning can be consid­
ered as particular cases of bounded commutative i?^-monoids. Namely from this 
point of view, MV-algebras, an algebraic counterpart of the Lukasiewicz infinite-
valued propositional logic, are precisely bounded commutative it^-monoids sat­
isfying the double negation law. Further, BL-algebras, an algebraic semantics 
of the H a j e k basic fuzzy logic, are just bounded commutative it^-monoids 
isomorphic to subdirect products of linearly ordered commutative i?^-monoids. 
Heyting algebras (duals to Brouwerian algebras), i.e. algebras of intuitionistic 
logic, are characterized as bounded commutative it^-monoids with idempotent 
multiplication. 
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JIRI RACHUNEK — DANA §ALOUNOVA 

Modal operators (special cases of closure operators) on Heyting algebras were 
introduced and studied by M a c n a b in [10]. Analogously, modal operators on 
MF-algebras were introduced in [7] recently. 

In this paper we define modal operators for arbitrary bounded commutative 
i?^-monoids and we study their properties in the class of normal i?^-monoids in 
particular. 

For concepts and results relating to M^-algebras, L?L-algebras and Heyting 
algebras see for instance [3], [6], [1]. 

D E F I N I T I O N 1. A bounded commutative R£-monoid is an algebra M = (M; • , , 
A, —>, 0,1) of type (2, 2, 2, 2, 0, 0) satisfying the following conditions. 

(i) (M; 0 ,1 ) is a commutative monoid. 

(ii) (M; V, A, 0,1) is a bounded lattice. 

(iii) x 0 y < z if and only if x < y —> z, for any x, ?/, z G M. 

(iv) x 0 (x —> y) = x A y, for auy x, y G M. 

Bounded commutative i?^-monoids are special cases of residuated lattices, 
more precisely (see for instance [4]), they are exactly commutative integral gen­
eralized BL-algebras in the sense of [2] and [8]. 

In what follows, by an R£-monoid we will mean a bounded commutathe 
It^-monoid. 

Let us define on any i?^-monoid M the unary operation of negation "~" by 
x~ := x —> 0 for any x G M. Further, we put x 0 y := (x (Dy~) for any 
x,y G M. 

Algebras of the above mentioned propositional logics can be characterized in 
the class of all i?^-monoids as follows: An R£-monoid M is 

a) a BL-algebra ([13]) if and only if M satisfies the identity of pre-linearity 
(x^y)V (y -+x) = 1; 

b) an MF-algebra ([11], [12]) if and only if M fulfills the double negation law 

c) a Heyting algebra ([16]) if and only if the operations " • " and UA" coincide 
on M. 

LEMMA 1. ([16], [15]) In any bounded commutative R£-monoid M we have for 
any x,y G M ; 

(1) x<y <=> x ->2 / = l. 

(2) xOy < x f\y < x,y. 

(3) x<y => x®z <yQ z. 

(4) x < y ==> z —> x < z —> y, y —+ z < x -^ z. 
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(5) (x Q y) -^ z = x -> (y ^ z) = y -> (x ^ z). 

(6) (x -> y) © (y -> z) < x -> z. 

(7) 1— = 1, 0— = 0 . 

(8) x < x . x~ = x . 

(9) x <y = > y~ <x~. 

(10) (xWy)~ =x~ Ay~. 

(11) (xAy)~~ =X—Ay—. 

(12) (x © y)~ = y —> x~ = y —> x~ = x —> y~ = x —> y~ . 

(13) (xQy)~~ >x—Qy—. 

(14) (x -> y) = x -» y . 

Remark 2. It is obvious that x 0 2 < y0z holds for any x,y,z e M such that 
x < y. Further by [14, Lemma 2.11], x 0 y = x 0 y for any x ,y G M, hence 
also x 0 y = x 0 y = x 0 y = x 0 y . 

DEF IN ITION 2. Let M be an it^-monoid. A mapping / : M —> M is called a 
modal operator on M if, for any x, y G M, 

1. * < / ( * ) ; 

2. / ( / ( x ) ) = / (x ) ; 

3. / ( x © y ) = / ( x ) © / ( y ) . 

If, moreover, for any x, y G M, 

4. Z ( x 0 y ) = / ( x 0 / ( y ) ) , 

then / is called a strong modal operator on M. 

PROPOS ITION 3. If f is a modal operator on an Rl-monoid M and x ,y G M, 
then 

(i) x < y = > / (x ) < / ( y ) ; 

(ii) / ( x -> y) < f(x) - / (y ) = / (/(*) -+ / (y) ) = x - / (y ) = / (s - / ( y ) ) ; 

(iii) / ( * ) < (x - / (0)) - / ( 0 ) ; 

(iv) / ( x ) © x " < / ( 0 ) ; 

(v) *e/(o) >/(*—) >/(*); 
(vi) f(x V y) = f(x V / (y) ) = / ( / ( x ) V f(y)). 

P r o o f . 
(i) x < y = > / ( x A y ) = / (x ) = > / ( y 0 (y -* x)) = / ( x ) = > 

/ (y) © / ( y - x) = / ( x ) = > / (x ) < / (y ) . 
(ii) By (i), f{x) 0 fix - y) = / ( x 0 (x - y)) = / ( x A y) < f(y). 
This implies 

/ ( x - y) < / ( x ) - / ( y ) . 
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Prom this we get 

/(/(*) - f(y)) < f (f(x)) - f (f(y)) = /(*)-> f(y) < * - f(y) 
<f(x->f(y))<f(x)^f(f(y)) 
= f(x) - f(y) < f(f(x) - f(y)), 

therefore 

f(x) - f(y) = / (/(*) - / (y)) = x - f(y) = / (x - /(</)). 

(iii) By use of (ii) and (i), we have 

f(x) © (/(*) - f(0)) = f(x) A / (0) = / (0) ==> / (x ) < (f(x) - / (0)) - / (0) 

= » / (* ) < (* - / (0)) - / (0 ) . 

(iv) By (ii), we obtain 

0 < / (0) = > x " = x - , 0 < x ^ / (0) = / ( x ) - / (0 ) , 

thus 
fix) Qx~< f{x) © (f(x) - / (0)) = / ( x ) A / (0) = / (0 ) . 

(v) According to Remark 2, Lemma 1(12), (8) and the part (ii) consecutively, 

x © / (0) = x — © / (0) = (x © / ( 0 ) " ) ~ = x / ( 0 ) ~ 

= x - - / ( 0 ) ~ = / ( x - - / ( 0 ) ~ ) > / ( * - - / (0)) > f{x- - 0) 

= fix") > fix). 

Hence 
z © / ( 0 ) > / ( x — ) > / ( x ) . 

(vi) fix V j/) < / (x V / (y)) < / (f(x) V / (y)) = / ( / (* V y)) = f(x V y). D 

Remark 4. By the definition of a modal operator and Proposition 3(i) every 
modal operator on an it^-monoid M is a closure operator on the lattice (M; V, A). 

Remark 5. M . G a l a t o s and C . T s i n a k i s introduced in [5] the notion 
of a nucleus of a residuated lattice L as a closure operator 7 on L satisfying 
7(0)7(6) < 7(ab), to represent generalizations of MV-algebras (dropping inte­
grality, commutativity and the existence of bounds) by means of ^-groups and 
nuclei of negative cones of ^-groups. Prom this point of view, a modal operator 
/ on an it^-monoid M is a nucleus of M satisfying f(x) 0 f(y) > f(x 0 y). 

PROPOS IT ION 6. If f is a strong modal operator on an R£-monoid M and 
x, y G M, then 

(vii) f(x®y)=f(f(x)®f(y)); 

(viii) xff i / (0) = / ( x — ) . 
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P r o o f . Let us suppose that / is a strong modal operator. Then 
(vii) f(x ®y) = f(x 0 f(y)) = f(f(x) 0 /(H)); 
(viii) By Proposition 3(v), f(x®f(0)) = f(x®0) = f(x ) implies f(x—) = 

/ ( x © / ( 0 ) ) > x © / ( 0 ) > / ( x — ) . • 

THEOREM 7. Let M be an Rl-monoid and f: M —> M be a mapping. Then f 
is a modal operator on M if and only if for any x,y G M it is satisfied: 

(a) x - f(y) = f(x) - f(y); 

v(b) f(x)Qf(y)>f(xQy). 

P r o o f . Let a mapping / fulfil conditions (a) and (b). 

1. For any x G M we have x —> f(x) = f(x) —• f(x) = 1. Therefore x < f(x). 

2. For all x G M it holds 1 = f(x) -+ f(x) = f(f(x)) -» f(x). This implies 
/ ( / ( * ) ) < f(x). Therefore, by 1, f(f(x)) = f(x). 

3. For any x,y € M it is true 
xQy<f(xQy) => y < x - • f(xQy) = f(x) -> / ( x © y ) = » yQf(x)< 
f(xQy) =--> f(x)<y-+f(xQy) = f(y)^f(xQy) = • f(x)Qf(y)< 
f(xQy) => f(x)Qf(y) = f(xQy). 

The converse implication is obvious. • 

COROLLARY 8. I/ M is an Rt-monoid and f: M —• M is a mapping, then f 
is a nucleus of M if and only if f satisfies (a) of Theorem 7 and it is isotone. 

Remark 9. If M is a Heyting algebra and x,y G AI, then f(x) G) f(y) = 
f(x) A f(y) > f(x A y) = f(x 0 y). Therefore, by Theorem 7, / is a modal 
operator on M iff it satisfies condition (a) (see also [10]). 

We say that an I?^-monoid M is normal if M satisfies the identity 

(x 0 y) = x 0 y . 

Remark 10. By [15, Proposition 5], every BF-algebra and every Heyting alge­
bra is normal, hence the variety of normal It^-monoids is considerably wide. 

Let M be an R£-monoid. For arbitrary element a G M we denote by 
if a: M —> M the mapping such that <pa(x) = a 0 x for every x G M. 

Denote by 
I(M) = {ae M : aOa = a} 

the set of all multiplicative idempotents in an I?^-monoid M. It is obvious that 
0,1 G I(M). By [9, Lemma 2.8.3], aQx = a Ax holds for any a G I(M), x G M. 
Further, if M is a normal Rl-monoid and a G I(M), then also a G I(M). 

T H E O R E M 1 1 . If M is a normal Rt-monoid and a G M . then (pa is a strong 
modal operator on M if and only if a~ , a G I(M). 
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P r o o f . 

a) Let a,x,y <E M, a~',a G I(M). 

1. (pa(x) = a 0 x = (a~ 0 x~)~ > x > x. 

2- (fa((pa(x)) = a 0 (a 0 ~) = a 0 (a~ 0 x~)~ = (a~ 0 (a • ~~) )~ 
(a~ 0 (a~ 0 x~))~ = ((a~ 0 a~) 0 x~)~ = (a~ • x~)~ a 0 x = (fa(x). 

3. We first prove that a(&x = (a\J x) . 
By Lemma 1(10), we obtain a 0 x — (a~ 0 x~)~ — (a~ A x~) 

((aV x)~)~ - (aVx) . 
We will now prove condition 3 from the definition of a modal operator. 
We have 

Va(x) 0 (pa(y) = (aex)Q(a®y) = (a~~ 0 x) 0 (a~~ 0 y) 

= (a V x) 0 (a V y) = ((a V x) • (a V y)) 

= ((a~~ 0 a~~) V (x 0 a~~) V (a~~ 0 y) V (~ • y))~~ 

= (a~~ V (x 0 2/))~~ = a~~ 0 (x 0 y) = a 0 (~ • y) 

= (pa(x®y). 

4. According to [14, Proposition 2.10], (M; 0 ) is a commutative semigroup. 
For this reason 

(pa(x 0 y) = a 0 (x 0 y) = a 0 (x 0 y) = (a 0 a) 0 (~ 0 2/) 

= a 0 (~ 0 (a 0 y)) = <pa(x 0 </?a(y)). 

b) Let <pa be a strong modal operator on M. Then on account of condition 3, 
we have a 0 ( x 0 y ) = (a@x)Q)(a®y). Then for x = y = 0 we obtain a0(O • 0) — 
(a 0 0) 0 (a 0 0), hence a 0 0 = (a 0 0) 0 (a 0 0). Since a 0 0 - a~ (see [14, 
Lemma 2.11]), we conclude that a = a 0 a , which yields a~~ ~ I(M) 

From condition 4 we have a 0 (x 0 y) = a 0 (x 0 (a 0 y)). Then for x = y = 0 
it follows that a— = a 0 0 = a 0 (0 0 0) = a 0 (0 0 (a 0 0)) - (a 0 0) 0 a -
a~~ 0 a~~, thus a = a 0 a . From this a = (a~ • a~)~, hence 
a~ = (a~ 0 a~) . Since M is normal, we obtain a~ = a~ • a~ and so 
a~ E I(M). D 

Remark 12. If AI is an AIV-algebra and a e M, then a G I(M) if and only 
if a~,a G I(M). Concurrently, by [7], in any MF-algebra it is true that pa 

is a modal operator on M if and only if ipa is a strong modal operator on M 
(namely if and only if a G I(M)). The question, whether (fa is a modal operator 
on M if and only if it is a strong modal operator also for any normal It^-monoid 
M, remains open. 
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COROLLARY 13. Let M be a normal Rt-monoid and f be a modal operator on 
M such that f(x) = f(x ) for all x G M . Then f is strong if and only if 
f = tpm and f(0)~ el(M). 

P r o o f . Suppose that a modal operator f on M satisfies the condition f(x) = 
f(x ) for every x G M. Then by Proposition 6 and Theorem 11, / is strong if 
and only if / = (pa for some a G M such that a~, a G I(M). 

If / is strong and x G M, then f(x) = f(x ) = / (0) 0 x. Hence / = ^/(o) 
and we have / ( 0 ) , / ( 0 ) " G I(M). 

For any modal operator / we have / (0) G I(M). In fact, / (0) = 
/ ( 0 0 0 ) — = (/(0) 0 / ( 0 ) ) — = / ( 0 ) — 0 / (0) — . Hence, if / = ipm and 
/ ( 0 ) " G / ( M ) , then by Theorem 11, / is strong. • 

COROLLARY 14. Specially for MV - algebras, we obtain (see [7]): If M is an 
MV-algebra and f is a modal operator on M, then f is strong if and only if 

f = <rV(0)-

Let M be an JZ^-monoid and a G M. Consider mappings ipa: M —> M 
and Xa'> M —> M such that ipa(x) := a —> x and Xa(x) := (x —> a) —> a 
for every :r G M. These mappings are significant modal operators in Heyting 
algebras (see [10]). We will now deal with the mappings ipa and Xa in arbitrary 
i^-monoids. 

PROPOSITION 15. If M is an Rt-monoid and a G I(M), then for any x,y G M 

X - » ^a(2/) = ^ a ( ^ ) - > ^a(2 / ) . 

P r o o f . By the definition of ^ a , x —» ^(2 / ) = x —> (a —> ?/) and ^ a (# ) —> 
^a(2/) = ( a —> x) —> (a —> 2/). At the same time, by Lemma 1(5), (a —> x) —> 
(a -> H) = ((a -> x) 0 a) -> y = (a A x) -» y = (a 0 x) -> */ = x -» (a —> y), 
whence the assertion follows. • 

From Theorem 7 and Proposition 15 we obtain as an immediate consequence 
the following claim. 

COROLLARY 16. Let M be an Rl-monoid and a G I(M). Then ipa is a modal 
operator on M if and only if for any x,y G M 

ipa(x) 0 ^a(y) > ^a(x 0 y). 

LEMMA 17. If M is an RH-monoid and a G M . then for any x,y G M 

X - • Xa(y) < Xa(x) - > Xa(y). 

P r o o f . By the definition of Xa and by Lemma 1(5), x —> Xa(y) = -c —> 
((?/ ~> a) -> a) = (2/ -> a) -> (a; -> a), Xa(x) -> Xa(y) = ((% -> a) -> a) -> 
((y —> a) —> a). Since by [14, Lemma 2.3], (y —> a) —» (x —> a) < ((x —> a) —-> a) 
-> ((H -> a) -> a), we have x -> xa(j/) < Xa(-c) -» Xa(?/)- • 
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For any R£-monoid M, let us denote by B(M) the set of all elements from M 
having the complement in the lattice (M;V,A,0,1) . Note that 0,1 G B(M). 
If a £ B(M) then its complement a' is equal to the element a~. By [9, 
Lemma 2.8.8], B(M) C I(M). 

PROPOSITION 18. Let M be an RH-monoid and a e B(M). Then for any 
x,y e M 

X~*Xa(y) =Xa(x) ~>Xa(y). 

P r o o f . Let a £ B(M), x,y e M. Then 

" -* Xa(-y) = - -> ((2/ -> a) -> a) = (y -> a) -> (x -> a), 

Xa(~) ~* Xa(y) = ( ( " -> «) -> a) -> ((i/ -> a) -> a) 

= (2/ -> a) -> (((x -> a) -> a) -> a ) , 

x —> a = x —> a~~~ = (x © a ~ ) ~ , 

(x —> a) —> a = ((x —> a) © a ~ ) ~ = ((x © a ~ ) ~ © a ~ ) ~ = ((x A a ~ ) ~ A a ~ ) ~ 

= ((x A a " ) V a) = ((x V a) A ( a " V a)) = (x V a) - x © a, 

((x —> a) —> a) —> a = (((x —> a) —> a) © a ~ ) ~ = ((x © a) © a ~ ) ~ = (x © a) —• a 
= (x V a) —> a = ((x V a) —> a ) ~ ~ = ((x V a) • a ~ ) ~ 
= ((x © a~) V (a © a ~ ) ) ~ = (x © a ~ ) ~ — x —> a. 

Hence 

Xa(~) -» Xa(2/) = (2/ - • a) - • ( ( ( " -» 0) -> a) -> a) 

= (H -> a) -> (x -> a) = x -> Xa(y). 

a 
COROLLARY 19. Let M be an Rl-monoid and a ~ B(M). Then Xa is a modal 
operator on M if and only if for any x,y £ M 

Xa(x)QXa(y) > Xa(xOy). 

Let M be an R£-monoid and / be a modal operator on M. Then Fix( / ) — 
{x <E M : f(x) = x} will denote the set of all fixed elements of the operator / . 
By the definition of a modal operator it is obvious that F ix( / ) Im( / ) . 

Since / is a closure operator on the lattice (M;V,A), we infer that 
(Fix(/); V-, A), where y\l F z — f(y V z) and "A" is the restriction of the corre­
sponding operation from M on Fix( / ) , is a lattice. 

T H E O R E M 20. If f is a modal operator on an R£-monoid M . then Fix(/) 
is closed under the operations "O" and "—>" and Fix( / ) — (Fix(/); - , V - , 
A,—>,/(0),l) is an Rt-monoid. 
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P r o o f . 
(i) Let x, y G Fix(f). Then f(xQy) = f(x)Qf(y) = x©y, thus x©y G Fix( / ) . 
(ii) (Fix(/); V- , A, / (0 ) , 1) is a bounded lattice. 

(iii) If y, z G Fix( / ) , then by Proposition 3 we have y -* z = f(y) —> / ( z ) = 

/ ( / ( I / ) - / (*)) = f(y - *)> h e n c e 2/ - s G Fix( / ) . 
Therefore, if x,y,z £ F ix( / ) , then x © y, 2/ —> z G Fix( / ) and for this reason 

xQy < z holds in Fix( /) if and only if x < y —• z. 
(iv) By foregoing, Fix( / ) also satisfies the identity x © (~ —• y) = x A y. • 

Remark 21. The above theorem strengthens general Lemma 3.3 of [5] proved 
for any residuated lattices in our special case of bounded (commutative) R£-mo-
noids. 

THEOREM 22. Let M be an Rl-monoid, a G I(M) and 

1(a) := [0, a] = {x G M : 0 < x < a}. 

For any x, y E 1(a) we set x © a y = x © y and x —>a y := (x —> y) A a. Then 
1(a) = (1(a)] ©a , V, A, —>aj0, a) i5 an Rl-monoid. 

P r o o f . 
(i) If x,2/ G I(a), then xQy e 1(a) and x © a = x A a = x, hence (I(a); © a , a ) 

is a commutative monoid. 
(ii) Obviously, (I(a); V, A, 0, a) is a bounded lattice. 
(iii) Let x, y ~ 1(a). It holds that x —> ?/ is the greatest element z G M such 

that x © z < y. Therefore (x —> y) A a is the greatest element in I(a) with this 
property. That means, x © a z < y if and only if z < (~ —>• y) A a = x —>a y for 
every z G I(a). 

(iv) For any x, y G I(a) we have x © a (x -^a y) = x © ((x —> y) A a) = x © 
(x —• y) © a = (x A y) A a = x A y. • 

Remark 23. If for any x^y e 1(a) we denote by x~a the negation of an element 
x and by x 0 a y the sum of elements x and y in the I?^-monoid I(a), then it 
holds 

x~a = x~ A a, x ©a y = (x © y) A a. 

Indeed 

x~a — x —>a 0 = (x —• 0) A a = x~ A a, 

x © a i / = (x~a © y~ a )~ A a = (x~ © a © y~ © a)~ A a = (x~ © y~ © a)~ A a 

= (a —> (x~ © y~)~) © a = a A (x~ © y~)~ = a A (x 0 y). 

Now, let M be arbitrary I?^-monoid (still bounded and commutative), 
a G I(M) and let / be a modal operator on M. Let us consider a mapping 
fa: 1(a) —> 1(a) such that fa(x) = f(x) A a (= f(x) © a), for every x G I(a). 
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THEOREM 24. Let M be an Rt-monoid, a G I(M) and f be a modal and strong 
modal, respectively, operator on M. Then fa is a modal and strong modal, 
respectively, operator on the Rl-monoid 1(a). 

P r o o f . Assume x,y G 1(a). 

1. x < a and x < / ( # ) , hence x < a A f(x) = fa(x). 

2- fa (fa(x)) = f(f(x) Aa)Aa = f(f(x) 0 a) A a = (f(f(x)) Q f(a)) A a 

= f{x) A f(a) Aa = f(x) Aa = fa(x). 

3. fa(x Qy) = f(xQy)Aa = f(x) 0 f(y) QaQa = (f(x) A a) 0 (f(y) A a) 

= fa(x)Qfa(y). 

4. Let / be strong. Then 

fa(x 0 a fa(y)) = fa((x 0 (f(y) A a)) A a) = f((x 0 (f(y) A a)) A a) A a 

= f(x 0 (f(y) A a)) A f(a) A a = f(x 0 f(f(y) A a)) A a 

= fix 0 ((f(f(y)) A / (a)) ) A a = f(x 0 (/(y) A / (a)) ) A a 

= f(x ® f(y A a)) A a = f(x 0 / (y)) A a = f(x 0 y) A a 

= /a(*e.y). n 

THEOREM 25 . 

a) Let M be an Rt-monoid, let f be a modal operator on M and f = f\j(M) • 
Then I(M) is a subalgebra of the reduct (M; 0 , V, A,0,1) and f is a mapping 
of I(M) into I(M) satisfying conditions 1, 2, 3 from the definition of a modal 
operator. 

b) Let M be a normal RH-monoid and let x~ G I(M) for each x G I{M). 
Then I(M) is closed also under the operation "0 " . Moreover, if f is a strong 
modal operator on M, then f satisfies condition 4 from the definition of a strong 
modal operator. 

c) Let M be a BL-algebra. Then I(M) is a subalgebra of the algebra M which 
is a Heyting algebra. If f is a modal operator on M, then f is a modal operator 
on the Heyting algebra I(M). If x~ G I(M) holds for each x G I(M) and f is 
a strong modal operator on M, then f is a strong modal operator on I(M). 

P r o o f . 

a) Let M be an i?^-monoid and x,y G I(M). Then 

(x © y) 0 (x 0 y) = (x 0 x) 0 (y 0 y) = x 0 y, 

thus x Oy = x Ay E I(M). Further, 

(x V y) 0 (x V y) = (x 0 x) V (y 0 x) V (x 0 y) V (y 0 y) = x V y V (x 0 y) = x V y, 

therefore also x V y G J(M). 
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Obviously, 0,1 el(M). 
Finally, if / is a modal operator on M , then for each x G I(M) we have 

f(x) = f(xOx) = f(x)Of(x). 

It follows that f(x) G I(M). Therefore / is a mapping of I(M) into I(M) 
satisfying conditions 1-3. 

b) If x~ G I(M) holds for every x G I(M), then (similarly to the third part 
of the proof of Theorem 11) for any x, y G I(M) we obtain x 0 y = (xV y) , 
and hence provided M is normal we have 

( x ® t / ) 0 ( x © t / ) = (xV y) 0 (x V y) = ((x V y) 0 (x V y)) = (x V y) 

= x®y, 

therefore x © i / G I(M). 
At the same time it is obvious that if / is a strong modal operator on M, 

then / fulfills condition 4 as well. 
c) By [13], an R£-monoid M is a I?L-algebra if and only if M is isomorphic 

to a subdirect product of I?^-chains (=L?L-chains). Let now a I?L-algebra M be 
a subdirect product of F?L-chains M a , a G T. If a G M, then a = (a a ; a G T) G 
I(M) if and only if aa G I(MOL) for each a G T. Let x = (xa\a E T), |/ = 
( y a ; a G r ) G I(M). Then x a -> ya = 1 for y a > xa and xa -> ya = ya for 
%a > ya> Whence (xQ —> Ha;a G T) G I(M) and it is equal to the element 
x —> y. By [13], furthermore, I(M) is a Heyting algebra. 

Then it is clear that / is a modal operator on I(M) for any modal opera­
tor / on M. Moreover, by [15, Proposition 5], every BL-algebra is a normal 
It^-monoid. Therefore, if x~ G I(M) for each x G I(M), then / is a strong 
modal operator on the Heyting algebra I(M) for every strong modal operator / 
on M. • 

Remark 26. For any a G AI, also mappings ~a: M —> M (in our notation) 
defined by 7ra(x) = a V x for each x G M were introduced and studied for 
Heyting algebras in [10]. Evidently, if M is an arbitrary It^-monoid, then ~a 

satisfies conditions 1 and 2 from the definition of a modal operator on M. This 
begs the question if na fulfills condition 3 from this definition as well and in 
which cases ~a = cpa holds, respectively. 

a) If M is a Heyting algebra then x 0 y = x A y for any x, y G M. From the 
distributivity of the lattice (M; V, A) it follows that condition 3 is satisfied for 
any a G M. At the same time, a 0 x = (a V x) , hence ~a need not generally 
be equal to ipa. For example, TTO(X) = x, ipo(x) = x . 

b) If M is an MV-algebra, then a V x = a 0 x holds for any a G I(M) and 
x G AI, and a 0 (x 0 y) = (a 0 x) 0 (a 0 y). Therefore, we have ipa = ~a for 
each a G I(M) and hence, for each a G I(M), moreover 7ra is a strong modal 
operator on M . 
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