[1] COLAK R.-TURKMENOGLU A.: The double sequence spaces $\ell^2_\infty(p)$, $c_0^2(p)$ and $c^2(p)$. (To appear).
[3] FRIDY J. A.-ORHAN C.:
Statistical limit superior and limit inferior. Proc. Amer. Math. Soc. 125 (1997), 3625-3631.
MR 1416085 |
Zbl 0883.40003
[4] HARDY G. H.: On the convergence of certain multiple series. Math. Proc. Cambridge Philos. Soc. 19 (1917), 86-95.
[5] MADDOX I. J.:
Paranormed sequence spaces generated by infinite matrices. Math. Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
MR 0222514
[6] MORICZ F.:
Extension of the spaces $c$ and $c_0$ from single to double sequences. Acta Math. Hungar. 57 (1991), 129-136.
MR 1128849
[7] NAKANO H.:
Modular sequence spaces. Proc. Japan Acad. Ser. A Math. Sci. 27 (1951) 508-512.
MR 0047929
[8] NANDA S.:
Strongly almost summable and strongly almost convergent sequences. Acta Math. Hungar. 49 (1987), 71-76.
MR 0869663 |
Zbl 0658.40008
[9] RATH D.-TRIPATHY B. C.:
Matrix maps on sequence spaces associated with sets of integers. Indian J. Pure Appl. Math. 27 (1996), 197-206.
MR 1375143 |
Zbl 0843.47017
[10] ŠALÁT T.:
On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
MR 0587239 |
Zbl 0437.40003
[11] SCHOENBERG I. J.:
The integer ability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.
MR 0104946
[12] SIMONS S.:
The sequence spaces $l_(p\nu)$ and $m(p\nu)$. Proc. London Math. Soc. (3) 15 (1965), 422-436.
MR 0176325
[13] TRIPATHY B. C.:
Matrix transformation between some class of sequences. J. Math. Anal. Appl. 206 (1997) 448-450.
MR 1433948
[14] TRIPATHY B. C.:
Statistically convergent double sequences. Tamkang J. Math. 34 (2003) 231-237.
MR 2001918 |
Zbl 1040.40001
[15] TRIPATHY B. C.-SEN M.:
On generalized statistically convergent sequences. Indian J. Pure Appl. Math. 32 (2001), 1689-1694.
MR 1880358 |
Zbl 0997.40001
[16] TURKMENOGLU A.:
Matrix transformation between some classes of double sequencies. J. Inst. Math. Comput. Sci. Math. Ser. 12 (1999), 23-31.
MR 1693417