Previous |  Up |  Next

Article

References:
[1] ESI A.-ET M.: Some new sequence spaces defined by sequence of Orlicz functions. Indian J. Pure Appl. Math. 31 (2000), 967-972. MR 1779908
[2] ET M.: On Some new Orlicz sequence spaces. J. Anal. 9 (2001), 21-28. MR 1884659 | Zbl 1019.46015
[3] ET M.-NURAY F.: $\Delta^m$-statistical convergence. Indian J. Pure Appl Math. 32 2001 961-969. MR 1848005 | Zbl 1241.54002
[4] KIZMAZ H.: On certain sequence spaces. Canad. Math. Bull. 24 (1981), 169-176. MR 0619442 | Zbl 0454.46010
[5] LINDENSTRAUSS J.-TZAFRIRI L.: On Orlicz sequence spaces. Isreal J. Math. 10 (1971), 379-390. MR 0313780 | Zbl 0227.46042
[6] MURSALEEN-KHAN A. M.-QAMARUDDIN: Difference sequence spaces defined Orlicz function. Demonstratio Math. 32 (1999), 145-150. MR 1691724
[7] NAKANO H.: Concave modulars. J. Math. Soc. Japan 5 (1953), 29-49. MR 0058882 | Zbl 0050.33402
[8] NURAY F.-GULCU A.: Some new sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 26 (1995), 1169-1176. MR 1364737 | Zbl 0852.46007
[9] PARASHAR S. D.-CHOUDHARY B.: Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 25 (1994), 419-428. MR 1272814 | Zbl 0802.46020
[10] RATH D.-TRIPATHY B. C.: Characterization of certain matrix operations. J. Orissa Math. Soc. 8 (1989), 121-134.
[11] RUCKLE W. H.: FK spaces in which the sequence of coordinate vector is bounded. Canad. J. Math. 25 (1973), 973-978. MR 0338731
[12] SARGENT W. L. C.: Some sequence spaces related to $\ell_p$ spaces. J. London Math Soc. 2 35 (1960), 161-171. MR 0116206
[13] TRIPATHY B. C.: Matrix maps on the power series convergent on the unit disc. J. Anal. 6 (1998), 27-31. MR 1671144 | Zbl 0919.40004
[14] TRIPATHY B. C.-SEN M.: On a new class of sequences related to the space $\ell_p$. Tamkang J. Math. 33 (2002), 167-171. MR 1897505 | Zbl 1005.46002
[15] TRIPATHY B. C.-MAHANTA S.: On a class of sequences related to the $\ell^p$ space defined by Orlicz functions. Soochow J. Math. 29 (2003), 379-391. MR 2021538
Partner of
EuDML logo