Previous |  Up |  Next

Article

References:
[1] BEIDAR K. I.-WIEGANDT R.: Rings with involution and chain conditions. J. Pure Appl. Algebra 87 (1993), 205-220. MR 1228152 | Zbl 0826.16031
[2] GARDNER B. J.: Radicals of abelian groups and associative rings. Acta Math. Acad. Sci. Hungar. 24 (1973), 259-268. MR 0323817
[3] GARDNER B. J.: Sub-prime radical classes determined by zerorings. Bull. Austral. Math. Soc. 12 (1975), 95-97. MR 0379565 | Zbl 0286.16005
[4] GARDNER B. J.- WIEGANDT R.: Radical Theory of Rings. Monogr. Textbooks Pure Appl. Math. 261, Marcel Dekker, New York-Basel, 2004. MR 2015465
[5] JAEGERMANN M.: Morita contexts and radicals. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 20 (1972), 619-623. MR 0313295 | Zbl 0242.16005
[6] JAEGERMANN M.-SANDS A. D.: On normal radicals and normal classes of rings. J. Algebra 50 (1978), 337-349. MR 0498659
[7] SANDS A. D.: On normal radicals. J. London Math. Soc. 11 (1975), 361-365. MR 0387337 | Zbl 0312.16006
[8] SNIDER R. L.: Complemented hereditary radicals. Bull. Austral. Math. Soc. 4 (1971), 307-320. MR 0280533 | Zbl 0206.32301
[9] STEINFELD O.: Quasi-Ideals in Rings and Semigroups. Akademiai Kiado, Budapest, 1978. MR 0521258 | Zbl 0403.16001
[10] STEWART P. N.- WIEGANDT R.: Quasi-ideals and bi-ideals in radical theory of rings. Acta Math. Acad. Sci. Hungar. 39 (1982), 298-294. MR 0653701
Partner of
EuDML logo