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ON ^-RADICALS 

S. TUMURBAT* — R. WlEGANDT* : 

(Communicated by Sylvia Pulmannovd) 

ABSTRACT. We consider biideal versions of conditions imposed on left (and/or 
right) ideals which latter characterize normal radicals. It is proved that the bi-
strong and principally bi-hereditary radicals are the A-radicals (i.e. radicals de­
pending only on the additive groups), a special case of normal radicals. A-radicals 
are characterized also in terms of quasi-ideals. 

1. Prel iminar ies 

A Kurosh-Amitsur radical 7 of rings is said to be an A -radical if the radicality 
depends only on the additive group of rings, that is, for any two rings A and B 
with isomorphic additive groups, A G 7 => B G 7 . 

This notion was introduced by G a r d n e r [2] and studied, for instance, in 
the papers o f J a e g e r m a n n [5], J a e g e r m a n n and S a n d s [6]. 

For a ring A, we shall denote the zero-ring on the additive group A+ , by A0 . 
G a r d n e r [2] (cf. [4; Lemma 3.12.7]) proved that 

7 0(A) = £ ( S C A I S° e 7 ) is an ideal of A. 

We shall make use of Gardner's Lemma ([3]) (cf. [4; Lemma 3.19.17]): 

A nilpotent ring A belongs to a radical 7 if and only if A0 £ 7 . 

A -radicals are special cases of normal radicals which are denned by Morita 

contexts. A radical 7 is called a normal radical if for every Morita context 

(it, V, W, S) the inclusion V ^ W C 7(i?) holds. For details we refer to [4]. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 16N80. 
Keywords : biideal, quasi-ideal, A-radical. 

Research supported by the Hungarian OTKA Grants T034530 and T043034. 

113 



S. TUMURBAT — R. WIEGANDT 

A subring B of a ring A is called a biideal if BAB C B, this fact will be 
denoted by B <b A. A quasi-ideal Q of a ring A (denoted by Q < A) is a 
subring satisfying QA n AQ C Q. Biideals and quasi-ideals are useful tools in 
structural investigations of rings (cf. for instance, [1], [4] and [9]); in [4; p. 164] 
it was observed that supernilpotent normal radicals can be defined in terms of 
biideals as upper radicals. In accordance with the notations <b and <q1 ideals, 
left ideals and right ideals will be denoted by «, <£ and <r, respectively. One 
readily sees that 

i) every quasi-ideal is a biideal, 
ii) if B<bA, then B <£ B + AB <r A, 

iii) if B <£R<rA, then B <bA. 

Let 7 be a radical and £ 7 its semisimple class. The radical 7 is bistable 
(q-stable) if S <b A (S < A), respectively, implies 'y(S) C 7(A). 7 is bi-stable 
((/-stable) if and only if the semisimple class £ 7 is bi-hereditary (q-hereditary), 
that is S <b A G S7 (S <q A G 5 7 ) , respectively, implies S E Sj. We say that 
7 is bi-strong (q-strong) if 7(5) = S <b A (j(S) = S <q A) implies S C <y(A). 
Left (right) stability, strongness and hereditariness are defined correspondingly. 

Obviously stability implies strongness, but a left and right strong radical need 
not be left or right stable. For biideals, however, bi-strongness is equivalent to 
bi-stability (cf. [10; Proposition 8]). 

S a n d s [7] characterized normal radicals as left strong and principally left 
hereditary (i.e. A G 7 = > Aa G 7 for all a G A) radicals (cf. [4; The­
orem 3.18.5]). Nevertheless, the left stable and principally left hereditary radicals 
are just the A -radicals, as proved by J a e g e r m a n n and S a n d s [6], see also 
[4; Theorem 3.19.13]). 

The main objective of this note is to replace here "left" and/or "right" 
by "bi-", and characterize radicals with these properties. Since bi-strongness 
is equivalent to bi-stability, characterizations of A-radicals are anticipated. 
For that purpose we need to define principally bi-hereditariness: A G 7 => 
aAa G 7 for all a G A. 

A -radicals will be characterized also in terms of quasi-ideals, therefore beside 
g-stability and q-strongness, we have to define a suitable notion for hereditari­
ness. A radical 7 is said to be principally left q-hereditary if A G 7 implies 
A(Aa D a A) G 7 for all a G A. 

In the proofs we shall work with matrix rings, more precisely with the ring 
M2(A) of 2 x 2 matrices over a ring A. Doing so, we use the notations (A){-
for the set of matrices which have elements from A at the i, j position and 0 
everywhere else, and f J for the set of matrices which have elements from 

X, Y, U and V at the corresponding positions. We recall from S n i d e r [8] 

114 



ON A-RADICALS 

(cf. [4; Proposition 4.9.1]): if 7 is a radical, then 7 ( M n ( A ) ) = Mn(I) for some 
ideal I of A for every ring A. 

2. Results 

LEMMA 1. Let 7 be a bi-strong or a q-strong or q-stable radical. If A G 7 or 
A0 G 7 , then M2(A) G 7 . 

P r o o f . Since every bi-strong or q-stable radical is q-strong and every 
quasi-ideal is a biideal, it suffices to prove the statement only for g-strong radi­
cals. 

Suppose that A G 7 . Then ( A ) n <q M2(A) and ( A ) n = A G 7 . Since 7 is 
g-strong, in view of S n i d e r [8] we have 

(A)uc1(M2(A)) = (I
I J) 

with an appropriate ideal I of A. Hence i C / , and so 7(M2(A)) = M2(A). 
Writing (A)12 in place of ( A ) n , we get the proof for the case A0 G 7 . • 

LEMMA 2. Let 7 be a q-strong and principally left q-hereditary radical. If 
A0 G 7 /or a ring A, tten A G 7 . 

P r o o f . By Lemma 1, we have M2(A) G 7 . Since for every element a G A 
we have 

-"><*>((£ !!)"(? ? ) ) 
= M 2 (A) (M 2 L4) (a ) n n ( a ) n M 2 ( A ) ) <q M 2 (A) , 

the principally g-hereditariness of 7 yields that 

M2(A){M2(A)(a)nn(a)nM2(A)) e 7 . 
Hence 

t ^ / ^ ^ ,4N\ / ^ ( A a D a A ) 0 \ (A(AanaA) ) 2 1 ^^ a n a A l 0 J G 7 , 

and so also A(Aa D aA) G 7 . But A(Aa D aA) < A and 7 is g-strong, therefore 

AaAa C A(Aa D aA) C 7(A) . 

Hence (Aa + 7(A))/7(A) is a homomorphic image of A0 G 7, and so 

(Aa +7 (A) ) /7 (A) G 7 . Since 7 is g-strong and (Aa + 7(A))/7(A) < A/7(A) , 

it follows that Aa C 7(A) for all a G A, that is, A2 C 7(A) . Thus A/7(.A) = 

A°/ ( 7 (A)) G 7 holds implying A = 7(A) . • 
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LEMMA 3 . Let 7 be a q -strong and principally left q-hereditary radical. If 
A G 7 , then A0 G 7 . 

P r o o f . Assume that A G 7 and A0 <£ 7 . As already mentioned, we know 
that 70(A) < A, so without loss of generality we may confine ourselves to the 
case A G 7 and 0 ^ A0 G S 7 . 

Clearly (A)n , (A)22 <q ( £ ^ ) and (A)-- = AL G 7- Since 7 is g-strong, 

(A)n + И ) и Ç 7 ( o A ) 
and 

A A 
A {i i.)-(M)n+M)»)(o ^ ) c ( o 

These relations imply 
.4 A2\ _ jA Ai 
0 A / - 7 \ 0 A 

Hence the factor ring f ) ^ 7 ( ) is a homomorphic image of A/A2 G 7 , 

and so we conclude that f ) G 7 . Since for each element a G A we have 

(A(AanoA))12=(£ ^ ) ( ( o ^)Wi2n(a)12(^ ^ ) ) << (Q A 

and 7 is principally left q-hereditary, it follows that 

(A(Aa n aA))° = (A(Aa n a-4))12 G 7 . 

Hence (A(Aa n aA)) C 7°(-4) = 0. This proves that AaAa C A(_4a n aA) = 0 
and (Aa)2 = 0 for every element a £ A. Thus for every a, b G -4 we have 

M2(A)(a
b °0)м2(A)(a

b ° ) = 0 , 

and therefore AaAb = 0, that is A4 = 0. Hence 4̂ G 7 is a nilpotent ring, and so 
-4° G 7 by Gardner's Lemma. Hence A0 G 7n<$7 = 0, which is a contradiction. 
Thus .4° G 7 as claimed. • 

LEMMA 4. Fe£ 7 be a q-stable and principally bi-hereditary radical. If A0 G 7 
/or a rma ^4. £ften A G 7 . 

P r o o f . We know from Lemma 1 that M2(A) G 7 . Since 7 is principally 
bi-hereditary, for any a G A we have 

aAa = (aAa)n = (a)11M2(A)(a)11 G 7 . 
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Taking into account that 7 is q-stable, we get that 

aAa C i(Aa n aA) C 7(A) . 

Hence (.4a)2 C j(A) for all a € A, and proceeding as the proof of Lemma 2, 
we get that A2 C 7(A) and .4 G 7(A). D 

LEMMA 5. Let 7 be a q-stable and principally bi-hereditary radical. If A G 7 , 
tten A0 € 7 • 

P r o o f . As in the proof of Lemma 4, we get (aAa)0 = (aAa)12 G 7 . Suppose 
that A0 £ 7 . As in the proof of Lemma 3, it suffices to deal with the case 
0 7-- .4° G <?7. But then (a,4a)° G £ 7 implying aAa = 0 for all a G -4. Hence 
from (x + y)-4(x + y) = 0 we conclude that xAy = 0 for all x,y € A, that is, 
.A3 = 0. Now Gardner's Lemma is applicable yielding 0 ^ - 4 ° G 7 , which is a 
contradiction. • 

LEMMA 6. 7 / 7 is an A-radical, then 7 is bistable, principally bi-hereditary 
and principally left q -hereditary. 

P r o o f . As mentioned, the A -radical 7 is left and right stable and princi­
pally left and right hereditary. Thus, if B<bA G 5 7 , then B<£B + AB<r A, and 
so B G <!?7, proving that 7 is bi-stable. Further, if A G 7 , then by aAa<£aA<rA 
it follows that aAa G 7 , whence 7 is principally bi-hereditary. 

If A G 7, then also A0 G 7 . Now, for every element x G _4a n a^4 the ring 
(Ax)° is in 7 as a homomorphic image of _4°. So by (Ax)° < A0 we have 

(A(AaHaA))0 = J2((Ax)° \xeAaHaA)ej. 

Taking into consideration that 7 is an A-radical, also A(Aa n aA) G 7 proving 
that 7 is principally left q-hereditary. • 

Summarizing the so far proved results, we get several characterizations for 
A -radicals. 

THEOREM. For a radical 7 of rings the following conditions are equivalent: 

(i) 7 is an A-radical, 
(ii) 7 is bi-strong and principally bi-hereditary, 

(iii) 7 is q -stable and principally bi-hereditary, 
(iv) 7 is bi-strong and principally left q -hereditary, 
(v) 7 is q -strong and principally left q -hereditary. 

P r o o f . By Lemma 6, any A -radical 7 is bi-strong, principally bi-hereditary 
and principally left q -hereditary. 
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As proved in [10], bi-strongness is equivalent to bi-stability. Further, the im­
plications 

bi-stable = > g-stable = > g-strong 

are obvious. 
Lemmas 2 and 3 state that for a q-strong and principally left q -hereditary 

radical 7 , A G 7 -<=> A0 G 7 . Lemmas 4 and 5 assert that for a g-stable 
and principally bi-hereditary radical 7 , A G 7 <̂=--> A0 G 7 . This property 
characterizes the A-radicals (cf. [4; Proposition 3.19.2]). D 

COROLLARY 1. A radical 7 of rings is an A-radical if and only if 7 is normal 
and bi-strong. 

P r o o f . By [4; Corollary 3.19.14], 7 is an A-radical if and only if 7 is 
normal and left (and right) stable. As one readily verifies, left and right stability 
is equivalent to bi-stability, that is, to bi-strongness, by [10]. D 

R e m a r k . A normal radical is always left and right strong, but not necess­
arily an A-radical. So Corollary 2 shows that left and right strongness (even 
together with normality) does not imply bi-strongness. D 

COROLLARY 2. For a radical 7 the following conditions are equivalent: 

(i) 7 is a hereditary A-radical, 
(ii) 7 is bi-strong and bi-hereditary, 

(iii) 7(B) = B n 7(A) for every B <bA. 

P r o o f . 
(i) <̂ => (ii): Left and right hereditariness is obviously equivalent to bi-

hereditariness. Furthermore, a bi-hereditary radical is also hereditary. 
(i) <=> (iii): By [4; Corollary 3.19.5], 7 is a hereditary A-radical if and 

only if 7(F) = L H 7(A) for every L <£ A (and also for every L <r A). Hence, 
if B <t A, then 7(B) = B n j(B + AB) and -f(B + AB) = (B + AB) n 7(A), 
whence 7(2?) = B n 7(A) . D 
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