Previous |  Up |  Next

Article

References:
[1] ASHRAFI A. R.-SAHRAEI H.: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294. MR 1933567 | Zbl 1018.20026
[2] ASHRAFI A. R.-SAHRAEI H.: Subgroups which are a union of a given number of conjugacy classes. In: Groups St. Andrews 2001 in Oxford, Vol. I. London Math. Soc. Lecture Note Ser. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 22-30. MR 2051512 | Zbl 1067.20033
[3] ASHRAFI A. R.-ZHAO YAOQING: On 5- and 6-decomposable finite groups. Math. Slovaca 53 (2003), 373-383. MR 2025470
[4] BERKOVICH, YA. G.-ZHMUD E.: Characters of Finite Groups. Part 2. Transl. Math. Monogr. 181, Amer. Math. Soc, Providence, RI, 1998. MR 1650707 | Zbl 0934.20009
[5] BRANDL R.-WUJIE SHI: The characterization of $PSL(2,q)$ by its element orders. J. Algebra 163 (1994), 109-114. MR 1257307
[6] BRANDL R.-WUJIE SHI: A characterization offinite simple groups with abelian Sylow 2-subgroups. Ricerche Mat. 42 (1993), 193-198. MR 1283814
[7] BUGEAUD YANN-ZHENFU CAO MAURICE MIGNOTTE: On simple $K_4$-group. J. Algebra 241 (2001), 658 668. MR 1843317
[8] COLLINS M. J.: Representations and Characters of Finite Groups. Cambridge University Prеss, Cambridgе, 1990. MR 1050762 | Zbl 0703.20001
[9] CONWAY J. H.-CURTIS R. T.-NORTON S. P.-PARKER R. A.-WILSON R. A.: Atlas of Finite Groups. Clarеndоn Prеss, Oxfоrd, 1985. MR 0827219 | Zbl 0568.20001
[10] HUIWEN DENG: The number of composite numbers in the set of element orders of a finite groups. J. Grоup Thеоry 1 (1998), 339-355. MR 1660408
[11] HUIWEN DENG WUJIE SHI: A simplicity criterion for finite groups. J. Algеbra 191 (1997), 371-381. MR 1444504
[12] GORENSTEIN D.: Finite Simple Groups. An Introduction to Their Classification. Plеnum, Nеw Yоrk-Lоndоn, 1982. MR 0698782 | Zbl 0483.20008
[13] HERZOG M.: On finite simple groups of order divisible by three primes only. J. Algеbra 10 (1968), 383-388. MR 0233881
[14] HUPPERT B.: Endliche Gruppen. Springer-Verlag, Bеrlin, 1967. MR 0224703 | Zbl 0217.07201
[15] KARPILOVSKY G.: Group Representations, Vol I. Nогth-Hоlland Math. Stud. 175, Nоrth-Hоlland, Amеsterdam, 1992.
[16] ISAACS I. M.: Character Theory of Finite Groups. Pure Appl. Math. 69, Acadеmic Prеss, Nеw Yоrk-San Franciscо-Lоndоn, 1976. MR 2761920 | Zbl 0337.20005
[17] KOHL S.: Counting the orbits on finite simple groups under the action of the automorphism group Suzuki groups vs. linear groups. Cоmm. Algebra 30 (2002), 3515-3532. MR 1915010 | Zbl 1011.20015
[18] ROBINSON D. J. S.: A : Course in the Theory of Groups. (2nd еd.). Grad. Tеxt in Math. 80, Springеr-Vеrlag, Nеw Yоrk, 1996. MR 1357169
[19] SCHONERT M. еt al.: GAP, Groups, Algorithms and Programming. Lеhrstuhl D für Math., Rhеinisch Westfalischе Tеchnischе Hоchschulе, Aachеn, 1993.
[20] WUJIE SHI-WENZE YANG: A new characterization of $A_5$ and the finite groups in which every non-identity element has prime order. J. Southwest Teachers College 9 (1984), 36-40. (Chinese)
[21] WUJIE SHI: The quantitative structure of groups and related topics. In: Group Theory in China (Zhe-Xian Wan, Sheng-Ming Shi et aL, eds.), Kluwer Academic Publishers, Dordrecht, 1996, pp. 163-181. MR 1447204
[22] WUJIE SHI-CHEN YANG : A class of special finite groups. Chinese Sci. Bull. 37 (1992), 252-253.
[23] WUJIE SHI: A characterization of Suzuki's simple groups. Proc. Amer. Math. Soc. 114 (1992), 589-591.
[24] WUJIE SHI: On simple $K_4$-groups. Chinese Sci. Bull. 36 (1991), 1281-1283. (Chinese)
Partner of
EuDML logo