[1] ASHRAFI A. R.-SAHRAEI H.:
On finite groups whose every normal subgroup is a union of the same number of conjugacy classes. Vietnam J. Math. 30 (2002), 289-294.
MR 1933567 |
Zbl 1018.20026
[2] ASHRAFI A. R.-SAHRAEI H.:
Subgroups which are a union of a given number of conjugacy classes. In: Groups St. Andrews 2001 in Oxford, Vol. I. London Math. Soc. Lecture Note Ser. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 22-30.
MR 2051512 |
Zbl 1067.20033
[3] ASHRAFI A. R.-ZHAO YAOQING:
On 5- and 6-decomposable finite groups. Math. Slovaca 53 (2003), 373-383.
MR 2025470
[4] BERKOVICH, YA. G.-ZHMUD E.:
Characters of Finite Groups. Part 2. Transl. Math. Monogr. 181, Amer. Math. Soc, Providence, RI, 1998.
MR 1650707 |
Zbl 0934.20009
[5] BRANDL R.-WUJIE SHI:
The characterization of $PSL(2,q)$ by its element orders. J. Algebra 163 (1994), 109-114.
MR 1257307
[6] BRANDL R.-WUJIE SHI:
A characterization offinite simple groups with abelian Sylow 2-subgroups. Ricerche Mat. 42 (1993), 193-198.
MR 1283814
[7] BUGEAUD YANN-ZHENFU CAO MAURICE MIGNOTTE:
On simple $K_4$-group. J. Algebra 241 (2001), 658 668.
MR 1843317
[8] COLLINS M. J.:
Representations and Characters of Finite Groups. Cambridge University Prеss, Cambridgе, 1990.
MR 1050762 |
Zbl 0703.20001
[9] CONWAY J. H.-CURTIS R. T.-NORTON S. P.-PARKER R. A.-WILSON R. A.:
Atlas of Finite Groups. Clarеndоn Prеss, Oxfоrd, 1985.
MR 0827219 |
Zbl 0568.20001
[10] HUIWEN DENG:
The number of composite numbers in the set of element orders of a finite groups. J. Grоup Thеоry 1 (1998), 339-355.
MR 1660408
[11] HUIWEN DENG WUJIE SHI:
A simplicity criterion for finite groups. J. Algеbra 191 (1997), 371-381.
MR 1444504
[12] GORENSTEIN D.:
Finite Simple Groups. An Introduction to Their Classification. Plеnum, Nеw Yоrk-Lоndоn, 1982.
MR 0698782 |
Zbl 0483.20008
[13] HERZOG M.:
On finite simple groups of order divisible by three primes only. J. Algеbra 10 (1968), 383-388.
MR 0233881
[15] KARPILOVSKY G.: Group Representations, Vol I. Nогth-Hоlland Math. Stud. 175, Nоrth-Hоlland, Amеsterdam, 1992.
[16] ISAACS I. M.:
Character Theory of Finite Groups. Pure Appl. Math. 69, Acadеmic Prеss, Nеw Yоrk-San Franciscо-Lоndоn, 1976.
MR 2761920 |
Zbl 0337.20005
[17] KOHL S.:
Counting the orbits on finite simple groups under the action of the automorphism group Suzuki groups vs. linear groups. Cоmm. Algebra 30 (2002), 3515-3532.
MR 1915010 |
Zbl 1011.20015
[18] ROBINSON D. J. S.: A :
Course in the Theory of Groups. (2nd еd.). Grad. Tеxt in Math. 80, Springеr-Vеrlag, Nеw Yоrk, 1996.
MR 1357169
[19] SCHONERT M. еt al.: GAP, Groups, Algorithms and Programming. Lеhrstuhl D für Math., Rhеinisch Westfalischе Tеchnischе Hоchschulе, Aachеn, 1993.
[20] WUJIE SHI-WENZE YANG: A new characterization of $A_5$ and the finite groups in which every non-identity element has prime order. J. Southwest Teachers College 9 (1984), 36-40. (Chinese)
[21] WUJIE SHI:
The quantitative structure of groups and related topics. In: Group Theory in China (Zhe-Xian Wan, Sheng-Ming Shi et aL, eds.), Kluwer Academic Publishers, Dordrecht, 1996, pp. 163-181.
MR 1447204
[22] WUJIE SHI-CHEN YANG : A class of special finite groups. Chinese Sci. Bull. 37 (1992), 252-253.
[23] WUJIE SHI: A characterization of Suzuki's simple groups. Proc. Amer. Math. Soc. 114 (1992), 589-591.
[24] WUJIE SHI: On simple $K_4$-groups. Chinese Sci. Bull. 36 (1991), 1281-1283. (Chinese)