Previous |  Up |  Next

Article

References:
[1] BHARDWAJ V. K.-SINGH N.: Some sequence spaces defined by Orlicz functions. Demonstratio Math. 33 (2000), 571-582. MR 1791722 | Zbl 0966.46002
[2] CONNOR J.: On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 32 (1989), 194-198. MR 1006746 | Zbl 0693.40007
[3] DEDAGICH F.-ZABREIKO P. P.: On superposition operators in $\ell_p$ spaces. Sibirsk. Mat. Zh. 28 (1987), 86-98. (Russian) MR 0886856
[4] Encyclopaedia of Mathematics. Vol. 1 (M. Hazewinkel, ed.), Kluwer Academic Publishers, Dortrecht, 1995. Zbl 0829.00004
[5] ESI A.: Some new sequence spaces defined by a modulus function. Math. Slovaca 49 (1999), 53-61. MR 1804473 | Zbl 0946.46007
[6] ESI A.: Some new sequence spaces defined by Orlicz functions. Bull. Inst. Math. Acad. Sinica27 (1999), 71-76. MR 1681557 | Zbl 0915.40001
[7] GHOSH D.-SRIVASTAVA P. D.: On some vector valued sequence space using Orlicz function. Glas. Mat. Ser. Ill 34 (1999), 253-261. MR 1739623 | Zbl 0953.46002
[8] GRINNELL R. J.: Functions preserving sequence spaces. Real Anal. Exchange 25 (1999/2000), 239-256. MR 1758005
[9] GROSSE-ERDMANN K.-G.: The structure of the sequence spaces of Maddox. Canad. J. Math. 44 (1992), 298-302. MR 1162345 | Zbl 0777.46008
[10] KOLK E.: Sequence spaces defined by a sequence of moduli. In: Abstracts of conference "Problems of Pure and Applied Mathematics", Tartu, 1990, pp. 131-134.
[11] KOLK E.: On strong boundedness and summability with respect to a sequence of moduli. Tartu Ul. Toimetised 960 (1993), 41-50. MR 1231936 | Zbl 1210.40015
[12] KOLK E. : Inclusion theorems for some sequence spaces defined by a sequence of moduli. Tartu Ul. Toimetised 970 (1994), 65-72. MR 1337906 | Zbl 1210.40010
[13] KOLK E. : F-seminormed sequence spaces defined by a sequence of modulus functions and strong summability. Indian J. Pure Appl. Math. 28 (1997), 1547-1566. MR 1608597 | Zbl 0920.46002
[14] LINDENSTRAUSS J.-TZAFRIRI L.: Classical Banach Spaces. I. Sequence Spaces. Ergeb. Math. Grenzgeb. 92, Springer-Verlag, Berlin-New York, 1977. MR 0500056 | Zbl 0362.46013
[15] MADDOX I. J.: Sequence spaces defined by a modulus. Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166. MR 0838663 | Zbl 0631.46010
[16] MADDOX I. J.: A class of dual sequence spaces. Tartu Ul. Toimetised 960 (1993), 67-74. MR 1231938 | Zbl 1210.46008
[17] MALKOWSKY E.-SAVAS E.: Some $\lambda$-sequence spaces defined by a modulus. Arch. Math. (Brno) 36 (2000), 219-228. MR 1785040 | Zbl 1046.40011
[18] MUSIELAK J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983. MR 0724434 | Zbl 0557.46020
[19] PARASHAR S. D.-CHOUDHARY B.: Sequence spaces defined by Orlicz functions. Indian J. Pure Appl. Math. 25 (1994), 419-428. MR 1272814 | Zbl 0802.46020
[20] PEHLIVAN S.: On strong almost convergence and uniform statistical convergence. Acta Comment. Univ. Tartu. Math. 2 (1998), 19-22. MR 1714732 | Zbl 0944.40001
[21] PEHLIVAN S.-FISHER B.: Some sequence spaces defined by a modulus. Math. Slovaca 45 (1995), 275-280. MR 1361822 | Zbl 0852.40002
[22] RUCKLE W. H.: FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math. 25 (1973), 973-978. MR 0338731 | Zbl 0267.46008
[23] SOOMER V.: On sequence spaces defined by a sequence of moduli and an extension of Kuttner's theorem. Acta Comment. Univ. Tartu. Math. 2 (1998), 29-38. MR 1714729 | Zbl 0944.40009
Partner of
EuDML logo