Previous |  Up |  Next

Article

References:
[1] BECKER P. G.: Algebraic independence of the values of certain series by Mahler's method. Monatsh. Math. 4 (1992), 183-198. MR 1203971 | Zbl 0764.11029
[2] BUNDSCHUH P.: Transcendental continued fractions. J. Number Theory 18 (1984), 91-98. MR 0734440 | Zbl 0531.10035
[3] BUNDSCHUH P.: A criterion for algebraic independence with some applications. Osaka J. Math. 25 (1988), 849-858. MR 0983806 | Zbl 0712.11041
[4] HANCL J.: Continued fractional algebraic independence of sequences. Publ. Math. Debrecen 46 (1995), 27-31. MR 1316646 | Zbl 0862.11045
[5] NETTLER G.: Transcendental continued fractions. J. Number Theory 13 (1981), 456-462. MR 0642921 | Zbl 0464.10023
[6] NISHIOKA K.: Mahler Functions and Transcendence. Lecture Notes in Math. 1631, Springer, New York, 1996. MR 1439966 | Zbl 0876.11034
[7] NISHIOKA K.: Algebraic independence of Mahler functions and their values. Tohoku Math. J. (2) 48 (1996), 51-70. MR 1373174 | Zbl 0852.11036
Partner of
EuDML logo