Previous |  Up |  Next

Article

References:
[1] BUGEAUD Y.-CORVAJA P.-ZANNIER U.: An upper bound for the G.C.D. of $a^n - 1$ and $b^n - 1$. Math. Z. (To appear). MR 1953049
[2] CORVAJA P.-ZANNIER U.: Diophantine equations with power sums and universal Hilbert sets. Indag. Math. (N.S.) 9 (1998), 317-332. MR 1692189 | Zbl 0923.11103
[3] CORVAJA P.-ZANNIER U.: Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149 (2002), 431-451. MR 1918678 | Zbl 1026.11021
[4] EVERTSE J.-H.: An improvement of the Quantitative Subspace Theorem. Compositio Math. 101 (1996), 225-311. MR 1394517 | Zbl 0856.11030
[5] VAN DER POORTEN A. J.: Some facts that should be better known, especially about rational functions. In: Number Theory and Applications. Proc. NATO ASI, Banff/Can. 1988. NATO ASI Ser., Ser. C 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 497-528. MR 1123092
[6] VAN DER POORTEN A. J.: Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles. C. R. Acad. Sci. Paris Ser. I Math. 306 (1998), 97-102. MR 0929097
[7] SCHMIDT W. M.: Diophantine Approximation. Lecture Notes in Math. 785, Springer Verlag, Berlin-Heidelberg-New York, 1980. MR 0568710 | Zbl 0421.10019
[8] SCHMIDT W. M.: Diophantine Approximations and Diophantine Equations. Lecture Notes in Math. 1467, Springer Verlag, Berlin, 1991. MR 1176315 | Zbl 0754.11020
[9] SCHMIDT W. M.: The zero multiplicity of linear recurrence sequences. Acta Math. 182 (1999), 243-282. MR 1710183 | Zbl 0974.11013
Partner of
EuDML logo