Previous |  Up |  Next

Article

References:
[1] BIRKHOFF G.: Lattice Theory. (Rev. ed.). Amer. Math. Soc. Colloq. Publ. 25, Amer. Math. Soc, New York, 1948. MR 0029876 | Zbl 0033.10103
[2] CIGNOLI R.-D'OTTAVIANO I. M. L-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic. Studia Logica Library Vol. 7, Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
[3] CONRAD P.: Lattice Ordered Groups. Math. Res. Library, Tulane University, New Orleans, 1970. Zbl 0258.06011
[4] DI NOLA A.-SESSA S.: On MV-algebras of continuous functions. In: Non-classical Logics and Their Application to Fuzzy Subsets (U. Hohle, E. P. Klement, eds.), Kluwer Academic Publishers, Dordrecht, 1996, pp. 22-31. MR 1345639
[5] GLUSCHANKOV D.: Cyclic ordered groups and MV-algebras. Czechoslovak Math. J. 43 (1993), 249-263. MR 1211747
[6] JAKUBfK J.: On complete MV-algebras. Czechoslovak Math. J. 45 (1995), 473-480. MR 1344513
[7] JAKUBlK J.: On archimedean MV-algebras. Czechoslovak Math. J. 48 (1998), 575-582. MR 1637871
[8] JAKUBIK J.: Complete distributivity of lattice ordered groups and of vector lattices. Czechoslovak Math. J. (To appear). MR 1864049 | Zbl 0998.06013
[9] MUNDICI D.: Interpretation of AFC* -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173
[10] SIKORSKI R.: Boolean Algebras. (2nd ed.), Springer-Verlag, Berlin-Goettingen-Heidelberg-New York, 1964. Zbl 0123.01303
[11] VULIKH B. Z.: Introduction to the Theory of Semiordered Spaces. Gos. Izd. Fiz.-Mat. Lit., Moskva, 1961 [English translation: Introduction to the Theory of Partially Ordered Spaces, Groningen, 1967]. (Russian)
Partner of
EuDML logo