[2] CAMERON P. J.-CHETWYND A. G.-WATKINS J. J.:
Decomposition of snarks. J. Graph Theory 11 (1987), 13-19.
MR 0876199 |
Zbl 0612.05030
[3] FIORINI S.:
Hypohamiltonian snarks. In: Graphs and Other Combinatorial Topics (M. Fiedler, ed.), Teubner-Texte Math. 59, Teubner, Leipzig, 1983, pp. 70-75.
MR 0737016 |
Zbl 0535.05045
[4] GOLDBERG M. K.:
Construction of class 2 graphs with maximum vertex degree 3. J. Combin. Theory Ser. B 31 (1981), 282-291.
MR 0638284
[5] ISAACS R.:
Infinite families of non-trivial trivalent graphs which are not Tait colorable. Amer. Math. Monthly 82 (1975), 221-239.
MR 0382052
[6] NEDELA R.-ŠKOVIERA M.:
Decompositions and reductions of snarks. J. Graph Theory 22 (1996), 253-279.
MR 1394327 |
Zbl 0856.05082
[7] ŠKOVIERA M.: Dipoles and the existence of irreduciЫe snarks. (In preparation).
[8] STEFFEN E.:
Classifications and characterizations of snarks. Discrete Math. 188 (1998), 183-203.
MR 1630478
[9] WATKINS J. J.-WILSON R. J.:
A Survey of snarks. In: Graph Theory, Combinatorics and Applications (Y. Alavi et al., eds.), Wiley, New York, 1991, pp. 1129-1144.
MR 1170851 |
Zbl 0841.05035