[1] FU H.-TSAI M.:
The maximum genus of diameter three graphs. Australas. J. Combin. 14 (1996), 1187-1197.
MR 1424333 |
Zbl 0862.05027
[3] HUANG Y.-LIU Y.:
Face size and the maximum genus of a graph. Part 1: Simple graphs. 3. Combin. Theory Ser. B 80 (2000), 356-370.
MR 1794699
[4] NEDELA R.-SKOVIERA M.:
On graphs embeddable with short faces. In: Topics in Combinatorics and Graph Theory (R. Bodendiek, R. Henn, eds.), Physica Verlag, Heidelberg, 1990, pp. 519-529.
MR 1100074 |
Zbl 0705.05027
[5] NEBESKÝ L.:
A new characterizations of the maximum genus of graphs. Czechoslovak Math. J. 31(106) (1981), 604-613.
MR 0631605
[6] NEBESKÝ L.:
A note on upper embeddable graphs. Czechoslovak Math. J. 33(108) (1983), 37-40.
MR 0687415 |
Zbl 0518.05029
[7] RINGEISEN R. D.:
Survey of results on the maximum genus of a graph. J. Graph Theory 3 (1978), 1-13.
MR 0519169
[8] THOMASSEN C.:
Embeddings of graphs with no short noncontractible cycles. J. Combin. Theory Ser. B 42 (1990), 155-177.
MR 1046752 |
Zbl 0704.05011