[Al] AAVALLONE A.:
Liapunov theorem for modular functions. Internat. J. Theoret. Phys. 34 (1995), 1197-1204.
MR 1353662
[A2] AVALLONE A.:
Nonatomic vector-valued modular functions. Preprint (1995).
MR 1739014
[A-L] AVALLONE A., LEPELLERE M. A.:
Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo (2) XLVII (1998), 221-264.
MR 1633479 |
Zbl 0931.28009
[A-W] AVALLONE A.-WEBER H.:
Lattice uniformities generated by filters. J. Math. Anal. Appl. 209 (1997), 507-528.
MR 1474622 |
Zbl 0907.06015
[B-Wl] BARBIERI G.-WEBER H.:
A topological approach to the study of fuzzy measures. In: Functional Analysis and Economic Theory (Y. Abramovich et al., eds.), Springer, Berlin, 1998, pp. 17-46.
MR 1730117 |
Zbl 0916.28015
[B-W2] BASILE A.-WEBER H.:
Topological Boolean rings of first and second category. Separating points for a countable family of measures, Radovi Mat. 2 (1986), 113-125.
MR 0852966 |
Zbl 0596.28015
[Bl] BASILE A.:
Controls of families of finitely additive functions. Ricerche Mat. XXXV (1986), 291-302.
MR 0932439 |
Zbl 0648.28007
[C] COSTANTINESCU C.: Some properties of speces of measures. Atti Sem. Mat. Fis. Univ. Modena 35, Supplemento (1987).
[Dl] DREWNOWSKI L.:
Topological rings of sets, continuous set functions, integration. III. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 20 (1972), 439-445.
MR 0316653 |
Zbl 0249.28006
[F-Tl] FLEISCHER I.-TRAYNOR T.:
Equivalence of group-valued measure on an abstract lattice. Bull. Acad. Polon. Sci. Ser. Sci. Math. 28 (1980), 549-556.
MR 0628641
[F-T2] FLEISCHER I.-TRAYNOR T.:
Group-valued modular functions. Algebra Universalis 14 (1982), 287-291.
MR 0654397 |
Zbl 0458.06004
[Gl] GOULD G. G.:
Extensions of vector-valued measures. Proc. London. Math. Soc. 16 (1966), 685-704.
MR 0196035 |
Zbl 0148.38102
[Kl] KINDLER J.:
A Mazur-Orlicz type theorem for submodular set functions. J. Math. Anal. Appl. 120 (1986), 533-546.
MR 0864770 |
Zbl 0605.28004
[K2] KRANZ P.:
Mutual equivalence of vector and scalar measures on lattices. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 25 (1977), 243-250.
MR 0444892 |
Zbl 0361.46041
[K-W] KLEMENT E. P.-WEBER S.:
Generalized measure. Fuzzy Sets and Systems 40 (1991), 375-394.
MR 1103665
[L] LIPECKI Z.:
A characterization of group-valued measures satisfying the countable chain condition. Colloq. Math. 11 (1974), 231-234.
MR 0364595 |
Zbl 0271.28009
[O] OHBA S.:
Some remarks on vector measures. Bull. Math. Soc. Sci. Math. 16 (1972), 217-223.
MR 0335746 |
Zbl 0275.28015
[PI] PAP E.:
Hewitt-Yosida decomposition for □-decomposable measures. Tatra Mt. Math. Publ. 3 (1993), 147-154.
MR 1278528
[P2] PAP E.:
Decompositions of supermodular functions and □-decomposable measures. Fuzzy Sets and Systems 65 (1994), 71-83.
MR 1294041
[S] SCHMIDT K.:
Jordan Decompositions of Generalized Vector Measures. Pitman Res. Notes Math. Ser. 214., Longman Sci. Tech., Harlow, 1989.
MR 1028550 |
Zbl 0692.28004
[T] TRAYNOR T.:
Modular functions and their Frechet-Nikodym topologies. In: Lecture Notes in Math. 1089, Springer, New Yourk, 1984, pp. 171-180.
MR 0786696 |
Zbl 0576.28014
[Wl] WEBER H.:
Uniform lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II. Ann. Mat. Pura Appl. 160; 165 (1991; 1993), 347-370; 133-158.
MR 1163215
[W2] WEBER H.:
Valuations on complemented lattices. Internat. J. Theoret. Phys. 34 (1995), 1799-1806.
MR 1353726 |
Zbl 0843.06005
[W3] WEBER H.:
Lattice uniformities and modular functions on orthomodular lattices. Order 12 (1995), 295-305.
MR 1361614 |
Zbl 0834.06013
[W5] WEBER H.:
Uniform lattices and modular functions. Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159-182.
MR 1694416 |
Zbl 0989.28007