Previous |  Up |  Next

Article

References:
[1] BENADO M.: Sur la théorie de la divisibilité. Acad. R. P. Romine, Bul. Sti. Sect. Mat.-Fyz. 6 (1954), 263-270. MR 0067089 | Zbl 0057.25301
[2] HOLLAND, CH.: Intrinsie metrics for lattice ordered groups. Algebra Universalis 19 (1984), 142-150. MR 0758313
[3] JAKUBÍK J.: Direct decompositions of partially ordered groups II. Czechoslovak Math. J 11 (1961), 490 515. (Russian) MR 0137776
[4] JAKUBÍK J.: Isometries of lattice ordered groups. Czеchoslovak Math. J. 30 (1980). 142-152. MR 0565917 | Zbl 0436.06013
[5] JAKUBІK J.: On isometries of non-abelian lattice ordered gгoups. Math. Slovaca 31 (1981), 171-175. MR 0611629
[6] JAKUBÍK J.: Weak isometries of lattice ordered groups. Math. Slovaca 38 (1988). 133-138. MR 0945366 | Zbl 0642.06009
[7] JAKUBÍK J.-KOLIBIAR M.: Isometries of multilattice groups. Czеchoslovak Math. J. 33 (1983), 602-612. MR 0721089 | Zbl 0538.06018
[8] JASEM M.: Isometries in Riesz groups. Czеchoslovak Math. J. 36 (1986). 35-43. MR 0822864 | Zbl 0603.06007
[9] JASEM M.: On weak isometries in multilattice groups. Math. Slovaca 40 (1990). 337-340. MR 1120964 | Zbl 0753.06015
[10] JASEM M.: On isometries in partially ordered groups. Math. Slovaca 43 (1993). 21-29. MR 1216265 | Zbl 0776.06015
[11] JASEM M.: Weak isometries in directed groups. Math. Slovaca 44 (1994). 39-43. MR 1290271 | Zbl 0797.06016
[12] JASEM M.: Weak isometries in partially ordered groups. Acta Math. Univ. Cumenian. 63 (1994), 259-265. MR 1319446 | Zbl 0821.06016
[13] JASEM M.: Weak isometries and direct decompositions of partially ordered groups. Tatra Mt. Math. Publ. 5 (1995), 131-142. MR 1384803 | Zbl 0856.06012
[14] RACHŮNEК J.: Isometries in ordered groups. Czechoslovak Math. J. 34 (1984), 334-341. MR 0743498
[15] SWAMY K. L. N.: Isometries in autometrized lattice ordered groups. Algebra Universalis 8 (1978), 59-64. MR 0463074 | Zbl 0409.06007
Partner of
EuDML logo