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ABSTRACT. In this paper, it is proved that for every stable isometry in a dis-
tributive multilattice group G there exists a direct decomposition G = A x B of
G with B abelian such that f(z) = z(A) — z(B) for each z € G. Further, the
actions of stable isometries on convex subsets are studied.

Swamy [15] introduced the concept of an isometry in an abelian lattice
ordered group C as a bijection f: C — C such that

[z —yl=f(z) - f(y)|  foreach z,yecC. (1)

Jakubik [4], [5] has applied this definition also for non-abelian lattice or-
dered groups and proved the following assertion:
(A) Let f be a stable isometry in a lattice ordered group C'. Then there exists
a direct decomposition C = A X B of C such that f(z) = z(A) — z(B)
for each z € C.
In [2], Holland gave a different proof of the assertion (A) and moreover,
he showed that B is an abelian group.
Jakubik and Kolibiar [7] put |z| = {2t—z, t € zV,,0} for any element
o of a multilattice group C and defined an isometry in a multilattice group C
to be a bijection f: C — C which satisfies the condition (1). They obtained an
analogous result to assertion (A) for abelian distributive multilattice groups.
In [14], Rachtunek generalized the notion of the isometry for any partially
ordered group and studied the isometries in a certain class of Riesz groups. He
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defined an isometry in a partially ordered group C' as a bijection f: (" — ('
satisfying (1) making use of the relation |z| = U(z, —z) for any = € (.

Weak isometries in lattice ordered groups were introduced by Jakubik [6.
He defined a weak isometry f in an lattice ordered group €' to be a mappine
S/ which satisfies the condition (1).

[sometries and weak isometries in some types of partially ordered groups have
been investigated by the author in [8] [13]. In [11], it was proved that every weak
isometry in a directed group is a bijection. Hence the notions of weak isometry
and isometry are equivalent in multilattice groups.

In this paper, Rachunek’s definition of the isometry is used in the inves-
tigation of isometries in multilattice groups.

First we recall some notions and notations used in the paper.

Let C be a partially ordered group (po-group). The group operation will he
written additively. We denote O = {o € 'y »r > 0}. If A C (. then we
denote by U(A) and L(A) the set of all upper bounds and the set of all Tower
bounds of the set A in ', respectively. For A = {a,b} we shall write U(a.b)
(L(a,b)) instead of U({a,b}) (L({a.b})). For each a € C', |a| = U(a.—a). If
a and b are elements of €', then we denote by a v, b the set of all minimal
clements of the set U(a, b), and analogously, a A, b is defined to be the set of all
maximal elements of the set L(a,b). If for a,b € C' there exists the least upper
bound (greatest lower bound) of the set {a,b} in ' then it will be denoted by
aVvVb (and). If C=PxQ is a dircct decomposition of €' then for o e " we
denote by x(P) and 2(Q) the components of . in the direct factors P and Q.
respectively. An isometry f in (' is called a stable isometry if f(0) = 0.

The partially ordered set P is said to be a multilattice (Benado [1])if it

fulfils the following conditions for each pair a,b € P:

(m,) If 2 € U(a,b), then there is x, € aV, b such that » < .r.
(m,) If y € L(a,b), then there is y, € a A, b such that y, > y.

A multilattice P is called distributive if, whenever a. b, ¢ are elements of
P’ such that (a A, b)N(an, ¢)#0 and (aV,, b)N(av,, ¢)# 0. then b =c.

Let G be a partially ordered group such that

(i) G is directed,

(ii) the partially ordered set (G, <) is a multilattice.
Then G is called a multilattice group. (See [1].)

A quadruple (a,b,u,v) of elements of a multilattice group ¢ is said to be
regularif u € a N b, veav, band v—-—a=0b—u.

Throughout the paper, we assume that H is a multilattice group.
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1. LEMMA. Let a,b€e H.

(i) IfveaVv, b, u=a—v+b, then (a,b,u,v) is a reqular quadruple in H .
(il) Ifuean,, b, v=b—u+ta, then (a,b,u,v) is a regular quadruple in I .

Proof.

(1) It suffices to verify that u € a A, b. From the relation 0 <v —a=0b—u
we obtain b > u. Since 0 < —b+v =—u+a, we get u < a. Thus u € L(a,b).
Then there exists u; € a A, b such that u; > u. Let v; =b—u; +a. Clearly,
vy € Ua,b). Since uy > u, we have v —a = b —u > b —u,. From this we get
¢ > ;. Because of v € a Vv, b, we obtain v = v . Therefore u, = .

Assertion (i) can be verified analogously. O

2. LEMMA. Let (a,b,u,v) be a regular quadruple in H .

(i) If ay € H, a, € [u,a], by =b—u+a,. then (a;,b,u.b)), (a.b,,a,,v)
are reqular quadruples in H .

(i) If b, € H. b, € [b,v], a; = u—b+by, then (a;,b,u, b)), (a,b,a,,v)
are reqular quadruples in H .

(iti) If b, € H. b, € [u,b], a, =b, —u+a, then (a,by,u,a,), (a,,b,b,, v)
are reqular quadruples in H .

(iv) If a, € H, a, € [a,v], b, = a, —a+u, then (a,by,u,a,), (a,,b,b,, v)
are reqular quadruples in H .

Proof.

(i) Clearly, u € a; A, b. Then from 1(ii) we obtain that (a,,b,u.b;) is a
regular quadruple. Obviously v € a Vv, b, . Since a; =a —v+b, =u—-b+b,
from 1 (i) we get that (a,b;,a,,v) is a regular quadruple.

(ii) This is a consequence of (i).

The proof of (iii) is analogous to the proof of (i).

(iv) This is a consequence of (iii). O

The following construction concerning non-abelian multilattice groups is es-
sentially a modification of a construction given by Jakubik and Kolibiar
[7] for abelian multilattice groups.

Let (a,b,u,v) be a regular quadruple in H. Let z € [u,v], a; € a A, x,
a, > u. Let by, =b—u+a,.By2(), (a;,b,u,b,) and (a,b,,a,,v) are regular
quadruples in H. Further, there exists u, € 52 Ay @, uy > ap. Let a, =
w, —a,+a, b, =u, —a, +u. From 2 (iii) and (iv) it follows that (a b, u,u,),
(tuy bbby (a uy,ap,a,), (ay, by, uy,v) are regular quadruples.

Now. we shall prove that w, € a, A, x. Since u; € L(a,,x), then there
exists = € a, A, o such that = > wu . Let 2 =a, —u, +z. By 2(ii), (a, 2, 2,a,),
(z.u,.a,.z) are regular quadruples. Thus z € L(a,x), Z > a, . Since a, € aA i,
then = =a. Thus z = u,. Therefore u, € a, A, x.
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Further there exists a, € a, VvV, =, a, <v. Let b= a, — a, +u,. Then from
2 (w), we infer that (a,,b,,b,v) and (a,,b,u,,a,) are regular quadruples. Let
b, =b—u, +b,. By 2(iv), (u,,b,,b,,b) and (b,b,b,,b,) are regular quadruples.
Clearly, u, € b A m €. Further, there exists v, € b\/ LT, v < a,. Let b, =
b ——b+v , a~u1—b+vl, a, =a,—u,+a. Then a;, = a, h+(l From 2 (1)
an(l (ii), we obtain that (a,,b,, v ,v), ('z,rl,Bz,B,bz), (62,1)1,6‘112), (a.b. wp vy ).
(a,a,a,,a,), (a;,u,,a;,a) are regular quadruples in H. Clearly, u, € a A, r.
The proof that v, € aV,_, z is analogous to the above proof that u, € a, A, r.

Under these denotations, we have the following two lemmas.

3. LEMMA. If a; = a, (ie, b, = b,) or a, = a, (i.e., b, = b ). then
(a,z,a,,a,), (x,b,b),b,), (a,b,,u,x), (ay,b,, x,v) are regular quadruples in H .

Proof. This is obvious. 0
4. LEMMA. If a, < a,, then H fails to be distributive.

Proof. If H is distributive, then from the definition of distributivity it
follows that @ = b. Since (a,b,u,,v,), (a,,v,,a,a,) are regular quadruples in
H, we obtain a, = a,, a contradiction. This ends the proof. O

From 3 and 4, we obtain:

5. THEOREM. Let H be distributive. Let (a,b,u,v) be a regular quadruple in
H. and let x € [u,v], ay € a A, x, a; > u. Then there are elements b, &
[u,b], a, € [a,v], b, € [b,v] such that (a,r,a,,a,), (x,b,b,.b,). (a b u.r).
(ay, by, z,v) are reqular quadruples in H .

For the remainder of this paper, let G be a distributive multilattice group.
and let f be a stable isometry in G'.

6. LEMMA. For each x € G there exists the least upper bound of 0. f(. )}

in GT.

Proof. Let «+ € G*. Then U(x) = |z| = |f(z)| = (*f(a").f(bz')\,\.
Therefore —f(x) vV f(z) = z. By 1(i), (=f(z).f(z),—f(x )_,+f( r) i\v a
regular quadruple. Clearly, —f(z) — « + f(x) < 0. Let a, € —f(. ) o

a, > —f(x) —x + f(x). According to Theorem 5, there exist (l(m(n S
b, € [—flx)—a+f(z), f(x)], b, € [f(zx),2], ay € [-f(x).xr] such that
(7—f(;lr),0,al,(1‘2), ( Jf(x), by, ) ((Ll,bl,Af(a') =+ f(o).0). (ay.b,.0.0)
are regular quadruples. Let z € U (O,f(f)) Since a, € U(wf(}l').())A we have
z+a, € U(-f(z), f(z)) = U(x). Then, from z + a, > = b, + a,. we obtain
z > b,. Therefore b, =0V f(x). O
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7. THEOREM. Let G be a distributive multilattice group, and let f be a stable
isometry in G. Let A, ={z € G*, f(z) =2z}, B, ={z e G, f(z)=—x},
A=A —-A, B= B, - B,. Then G 1is the direct product of the po-group A
and the abelian po-group B, and f(z) = z(A) — z(B) for each z € G.

Proof. It follows from 6 and [12; Theorem 2]. O

Remark. In [13; Theorem 2.6], it was shown that if C' = P x @ is a direct
decomposition of a po-group C' with Q abelian, and if we put g(z) == z(A)—z(B)
for each x € C, then g is a stable isometry in C'.

Theorem 7 generalizes Theorem 2.5 of Jakubik [4] and with Theorem 2.6
([13]) generalize Theorem 4 of Holland [2].

Theorem 7 also shows that the result of Jakubik and Kolibiar concern-
ing isometries and direct decompositions of distributive multilattice groups can
be extended to non-abelian distributive multilattice groups using the usual defi-
nition of the absolute of an element in a po-group. The notation from Theorem 7
will be also adopted in the following three Theorems.

8. THEOREM.
(1) If 2,y € G, y <z, then f([yat]) = [y(A) —xz(B), z(A) — y(B)] )
(i) If v,y € G, f(y) < f(), then
[f), f(2)] = f(ly(A)+a(B), 2(A)+y(B)]).
(iii) A non-void subset M of G s a directed convex subset of G if and only
if f(M) is a directed convex subset of G .

The proof is the same as the proof of [13; Theorem 2.2].

9. THEOREM. Let g be an isometry in G. Then g(U (L(z,y))NL(U(z,y))) =
U(L(g(.t),g(y))) N L(U(g(m),g(iy))) for each z,y € G.

The proof is analogous to the proof of [13; Theorem 2.3], only instead of
Theorem 2.2 ([13]), it is needed to use Theorem 8 (i) above.

10. THEOREM. Let C be a directed convex subgroup of G. Then f(C)=C.

Proof. Let # € C. Then there exist u,v € C such that v € L(z,0),
v € U(x,0). In view of Theorem 7, we have v > x(A) > u, v > z(B) > u.
Then by the convexity of C, z(A),z(B) € C. Thus z(A) — z(B) € C'. From
Theorem 7. it follows that f(x(A) — I(B)) = z(A) + z(B) = xz. Therefore
¢ flo).

If y € f(C), then y' = f(y) for some y € C'. By using similar considerations
as above for x, we get y(A),y(B) € C'. Thus y(A) —y(B) = f(y) =y € C.
Henee f(C) C C. O
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