[1] BERNAU S. J.:
Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. (3) 15 (1965), 599-631.
MR 0182661
[3] FREMLIN D. H.:
A direct proof of the Mathes-Wright integral extension theorem. J. London Math. Soc. (2) 11 (1975), 276-284.
MR 0380345
[4] HRACHOVINA E.:
A generalization of the Kolmogorov consistency theorem for vector measures. Acta Math. Univ. Comenian. 54-55 (1988), 141-145.
MR 1083208 |
Zbl 0723.28004
[5] JAMESON G.:
Ordered Linear Spaces. Lecture Notes in Math. 141, Springer, Berlin-New York, 1970.
MR 0438077 |
Zbl 0196.13401
[6] LUXEMBURG W. A.-ZAANEN A. C.: Riesz Spaces I. North Holland, Amsterdam, 1971.
[8] RIEČAN B.:
On the lattice group valued measures. Časopis Pěst. Mat. 101 (1976), 343-349.
MR 0499072
[9] RIEČAN B.:
Notes on lattice-valued measures. Acta Math. Univ. Comenian. XLII-XLIII (1983), 181-192.
MR 0740746 |
Zbl 0568.28010
[10] RIEČAN B.:
On measures and integrals with values in ordered groups. Math. Slovaca 33 (1983), 153-163.
MR 0699085 |
Zbl 0519.28004
[11] RIEČAN J.:
On the Kolmogorov consistency theorem for Riesz space valued measures. Acta Math. Univ. Comenian. 48-49 (1986), 173-180.
MR 0885331 |
Zbl 0626.60007
[13] VOLAUF P.:
On extension of maps with values in ordered spaces. Math. Slovaca 30, (1980), 351-361.
MR 0595295 |
Zbl 0448.28007
[14] VOLAUF P.:
On various notions of regularity in ordered spaces. Math. Slovaca 35 (1985).127-130.
MR 0795006 |
Zbl 0597.28017
[16] VOLAUF P.:
Alexandrov and Kolmogorov consistency theorem for measures with values in partially ordered groups. Tatra Moutains Math. Publ. 3 (1993), 237-244.
MR 1278538 |
Zbl 0820.28006
[17] WRIGHT J. D. M.:
The measure extension problem for vector lattices. Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85.
MR 0330411 |
Zbl 0215.48101
[18] WRIGHT J. D. M.:
An algebraic characterization of vector lattices with the Borel regularity property. J. London Math. Soc. (2) 7 (1973), 277-285.
MR 0333116 |
Zbl 0266.46036
[19] WRIGHT J. D. M.:
Measures with values in partially ordered spaces: regularity and $\sigma$-additivity. In: Measure Theory. Lecture Notes in Math. 541 (D. Kozlov, A. Bellow, eds.). Springer, Berlin-New York, 1976, pp. 267-276.
MR 0450506 |
Zbl 0357.28011
[20] WRIGHT J. D. M.:
Sur certain espaces vectoriels reticules. C.R. Acad. Sc. Paris 290 (1990), 169-170.
MR 0564152