Previous |  Up |  Next

Article

References:
[1] BERNAU S. J.: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings. Proc. London Math. Soc. (3) 15 (1965), 599-631. MR 0182661
[2] BIRKHOFF G.: Lattice Theory. Amer. Math. Soc, Providence, R. I.-1967. MR 0227053 | Zbl 0153.02501
[3] FREMLIN D. H.: A direct proof of the Mathes-Wright integral extension theorem. J. London Math. Soc. (2) 11 (1975), 276-284. MR 0380345
[4] HRACHOVINA E.: A generalization of the Kolmogorov consistency theorem for vector measures. Acta Math. Univ. Comenian. 54-55 (1988), 141-145. MR 1083208 | Zbl 0723.28004
[5] JAMESON G.: Ordered Linear Spaces. Lecture Notes in Math. 141, Springer, Berlin-New York, 1970. MR 0438077 | Zbl 0196.13401
[6] LUXEMBURG W. A.-ZAANEN A. C.: Riesz Spaces I. North Holland, Amsterdam, 1971.
[7] MARCZEWSKI E.: On compact measures. Fund. Math. 40 (1953), 113-124. MR 0059994 | Zbl 0052.04902
[8] RIEČAN B.: On the lattice group valued measures. Časopis Pěst. Mat. 101 (1976), 343-349. MR 0499072
[9] RIEČAN B.: Notes on lattice-valued measures. Acta Math. Univ. Comenian. XLII-XLIII (1983), 181-192. MR 0740746 | Zbl 0568.28010
[10] RIEČAN B.: On measures and integrals with values in ordered groups. Math. Slovaca 33 (1983), 153-163. MR 0699085 | Zbl 0519.28004
[11] RIEČAN J.: On the Kolmogorov consistency theorem for Riesz space valued measures. Acta Math. Univ. Comenian. 48-49 (1986), 173-180. MR 0885331 | Zbl 0626.60007
[12] ŠIPOŠ J.: On extension of group valued measures. Math. Slovaca 40 (1990), 279-286. MR 1094781 | Zbl 0760.28007
[13] VOLAUF P.: On extension of maps with values in ordered spaces. Math. Slovaca 30, (1980), 351-361. MR 0595295 | Zbl 0448.28007
[14] VOLAUF P.: On various notions of regularity in ordered spaces. Math. Slovaca 35 (1985).127-130. MR 0795006 | Zbl 0597.28017
[15] VOLAUF P.: On the lattice group valued submeasures. Math. Slovaca 40 (1990). 107-411. MR 1120971 | Zbl 0760.28008
[16] VOLAUF P.: Alexandrov and Kolmogorov consistency theorem for measures with values in partially ordered groups. Tatra Moutains Math. Publ. 3 (1993), 237-244. MR 1278538 | Zbl 0820.28006
[17] WRIGHT J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85. MR 0330411 | Zbl 0215.48101
[18] WRIGHT J. D. M.: An algebraic characterization of vector lattices with the Borel regularity property. J. London Math. Soc. (2) 7 (1973), 277-285. MR 0333116 | Zbl 0266.46036
[19] WRIGHT J. D. M.: Measures with values in partially ordered spaces: regularity and $\sigma$-additivity. In: Measure Theory. Lecture Notes in Math. 541 (D. Kozlov, A. Bellow, eds.). Springer, Berlin-New York, 1976, pp. 267-276. MR 0450506 | Zbl 0357.28011
[20] WRIGHT J. D. M.: Sur certain espaces vectoriels reticules. C.R. Acad. Sc. Paris 290 (1990), 169-170. MR 0564152
Partner of
EuDML logo