[1] DUBOIS D.-PRADE H.:
Review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121.
MR 0813766 |
Zbl 0582.03040
[2] ICHIHASHI H.-TANAKA H.-ASAI K.:
Fuzzy integrals based on pseudo-addition and multiplication. J. Math. Anal. Appl. 130 (1988), 354-364.
MR 0929941
[3] KLEMENT E. P.-WEBER S.:
Generalized measures. Fuzzy Sets and Systems 40 (1991), 375-394.
MR 1103665 |
Zbl 0733.28012
[4] KOLESÁROVÁ A.:
A note on the $\oplus$-measure based integrals. Tatra Mountains Math. Publ. 3 (1993), 173-182.
MR 1278532 |
Zbl 0799.28014
[5] MARINOVÁ I.:
Integration with respect to a $\oplus$-measure. Math. Slovaca 36 (1986), 15-24.
MR 0832366 |
Zbl 0606.28019
[6] MESIAR R.-PAP E.: On additivity and pseudo-additivity of pseudo-additive measure based integrals. (To appear).
[7] MESIAR R.-RYBÁRIK J.:
Pseudo-arithmetical operations. Tatra Mountains Math. Publ. 2 (1993), 185-192.
MR 1251052 |
Zbl 0840.28011
[8] PAP E.:
An integral generated by a decomposable measure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144.
MR 1158414 |
Zbl 0754.28002
[10] RIEČANOVÁ Z.:
About $\sigma$-additive and $\sigma$-maxitive measures. Math. Slovaca 32 (1982). 389-395.
MR 0676575 |
Zbl 0507.28004
[12] SUGENO M.-MUROFUSHI T.:
Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222.
MR 0874969 |
Zbl 0611.28010
[13] WEBER S.:
$\perp$-decomposable measures and integrals for Archimedean t-conorm $\perp$. J. Math. Anal. Appl. 101 (1984), 114-138.
MR 0746230