Previous |  Up |  Next

Article

References:
[1] DUBOIS D.-PRADE H.: Review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121. MR 0813766 | Zbl 0582.03040
[2] ICHIHASHI H.-TANAKA H.-ASAI K.: Fuzzy integrals based on pseudo-addition and multiplication. J. Math. Anal. Appl. 130 (1988), 354-364. MR 0929941
[3] KLEMENT E. P.-WEBER S.: Generalized measures. Fuzzy Sets and Systems 40 (1991), 375-394. MR 1103665 | Zbl 0733.28012
[4] KOLESÁROVÁ A.: A note on the $\oplus$-measure based integrals. Tatra Mountains Math. Publ. 3 (1993), 173-182. MR 1278532 | Zbl 0799.28014
[5] MARINOVÁ I.: Integration with respect to a $\oplus$-measure. Math. Slovaca 36 (1986), 15-24. MR 0832366 | Zbl 0606.28019
[6] MESIAR R.-PAP E.: On additivity and pseudo-additivity of pseudo-additive measure based integrals. (To appear).
[7] MESIAR R.-RYBÁRIK J.: Pseudo-arithmetical operations. Tatra Mountains Math. Publ. 2 (1993), 185-192. MR 1251052 | Zbl 0840.28011
[8] PAP E.: An integral generated by a decomposable measure. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. MR 1158414 | Zbl 0754.28002
[9] PAP E.: g-Calculus. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (To appear). MR 1319781 | Zbl 0823.28011
[10] RIEČANOVÁ Z.: About $\sigma$-additive and $\sigma$-maxitive measures. Math. Slovaca 32 (1982). 389-395. MR 0676575 | Zbl 0507.28004
[11] SHILKRET N.: Maxitive measure and integration. Indag. Math. 33 (1971), 109-116. MR 0288225 | Zbl 0218.28005
[12] SUGENO M.-MUROFUSHI T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122 (1987), 197-222. MR 0874969 | Zbl 0611.28010
[13] WEBER S.: $\perp$-decomposable measures and integrals for Archimedean t-conorm $\perp$. J. Math. Anal. Appl. 101 (1984), 114-138. MR 0746230
Partner of
EuDML logo