Previous |  Up |  Next

Article

References:
[1] CHARTRAND G., JACOBSON M. S., LEHEL J., OELLERMANN O. R., RUIZ S., SABA F.: Irregular networks. Congr. Numer. 64 (1988), 184-192. MR 0988682
[2] DINITZ J. H., GARNICK D. K., GYÁRFÁS A.: On the irregularity strength of the m x n grid. J. Graph Theory 16 (1992), 355-374. MR 1174459
[3] EBERT G., HEMMETER J., LAZEBNIK F., WOLDAR A.: Irregularity strengths of certain graphs. Congr. Numer. 71 (1990), 39-52. MR 1041614
[4] FAUDREE R. J., JACOBSON M. S., KINCH L., LEHEL J.: Irregularity strength of dense graphs. Discrete Math. 91 (1991), 45-59. MR 1120886 | Zbl 0755.05092
[5] FAUDREE R. J., LEHEL J.: Bound on the irregularity strength of regular graphs. In: Combinatorics. Colloq. Math. Soc. János Bolyai 52, Eger, 1987, pp. 247-256. MR 1221563
[6] GYÁRFÁS A.: The irregularity strength of $K_{m,n}$ is 4 for odd $m$. Discrete Math. 71 (1988), 273-274. MR 0959011
[7] GYÁRFÁS A.: The irregularity strength of $K_n - mK_2$. Utilitas Math. 35 (1989), 111-114. MR 0992395
[8] KINCH L., LEHEL J.: The irregularity strength of $tP_3$. Discrete Math. 94 (1991), 75-79. MR 1141057
[9] LEHEL J.: Facts and quests on degree irregular assignments. In: Graph Theory, Combinatorics and Applications, J. Wiley Sons, New York, 1991, pp. 765-782. MR 1170823 | Zbl 0841.05052
[10] McQUILLAN D., RICHTER R. B.: On the crossing numbers of certain generalized Petersen graphs. Discrete Math. 104 (1992), 311-320. MR 1171327 | Zbl 0756.05048
[11] NEDELA R., ŠKOVIERA M.: Which generalized Petersen graphs are Cayley graphs?. J. Graph Theory (Submitted). MR 1315420 | Zbl 0812.05026
[12] SCHWENK A. J.: Enumeration of Hamiltonian cycles in certain generalized Petersen graphs. J. Combin. Theory Ser. B 47 (1989), 53-59. MR 1007713 | Zbl 0626.05038
[13] WATKINS M. E.: A theorem on Tait colorings with an application to generalized Petersen graphs. J. Combin. Theory 6 (1969), 152-164. MR 0236062
Partner of
EuDML logo