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THE IRREGULARITY STRENGTH OF 

GENERALIZED PETERSEN GRAPHS 

STANISLAV JENDROE — VLADIMIR ZOLDAK 

(Communicated by Martin Skoviera) 

A B S T R A C T . The generalized Pe tersen graph P(n,k), n > 3 , l < k < - £ , 

is a graph on 2n vertices labelled { a i , a 2 , . . . , an ,b i ,b2> • • • >0n} and edges 
{aibi, aiai+i,bibi+k : i = l , 2 , . . . , n ; subscripts modu lo n } . Assign positive 
integer weights to t he edges of P(n, k) in such a way tha t the graphs become 
irregular, i.e. the weight sums at the vertices become pairwise distinct. The mini­
mum of the largest weights assigned over all such irregular assignments on P(n, k) 
is determined. 

1. In t roduc t i on 

Let G be a simple graph having no connected components isomorphic to K\ 
or 7^2- A function w: E(G) —> Z + is called an assignment on G, and for an 
edge e of G, w(e) is called the weight of e. We say that w is of strength s(w) if 
s(w) = max{w(e) : e G E(G)}. The weight of a vertex x G V(G) is the sum of 
the weights of its incident edges, and is denoted by wt(x). We call an assignment 
w irregular if distinct vertices have distinct weights. The irregularity strength 
s(G) of G is defined as s(G) = mm{s(w) : w is an irregular assignment on G} . 

The problem of studying s(G) was proposed by C h a r t r a n d et al. in [1]. 
It proved to be rather hard, even for very simple graphs ([2], [3], [4], [5], [6], [7], 
and [8]). An excellent survey on subject was written by L e h e 1 [9]. 

In this note we continue the study of irregular assignments by determining 
the irregularity strength of generalized Petersen graphs. 

Let n and k be positive integers, n > 3 and 1 < k < -y . The generalized 

Petersen graph P (n , k) is a graph with vertex set {ai, a 2 , . . . , an , &i, &2> • • • > bn} 
and edge set consisting of all edges of the form a ^ a ^ i , a ^ and bibi+k ? where 
1 < i < n; the subscripts are reduced modulo n. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 05C35, 05C78. 
K e y w o r d s : Generalized Petersen graph , Irregularity s trength , Edge assignment, Graph 

labelling. 
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Generalized Petersen graphs were first defined by W a t k i n s [13]. Various 
properties of P(n, k) have been found out ever since (see e.g. M c Q u i l l a n 
- R i c h t e r [10], N e d e l a - S k o v i e r a [11], S c h w e n k [12], where 
other references can be found). 

We prove in the next sections our main result, the following theorem: 

THEOREM. Let P (n , k), n > 3, 1 < k < —, be a generalized Petersen graph; 

then 

s(P(n,k)) = 

2n + 2 
3 

2n + 2 

if n Џ. 5 (mod 6) , 

+ 1 if n = Ъ (mod 6) . 

2. Lower b o u n d s o n s(P(n,k)) 

Since the graph P ( n , k) is a cubic graph on 2n vertices, it can be easily seen 
that (compare with [1], [2], and [9]): 

L E M M A 1. s(P(n,k)) > \ 2 n + 2 . 

LEMMA 2. Let w be an irregular assignment of P(n,k); then 

n n 

2y^[w(aiai+i) +w(a{bi) + w(bibi+k)] = "^[wtfai) + wt(b{)] . 
i=i i=i 

LEMMA 3. If n = 5 (mod 6), then s(P(n, k)) > 2n + 2 + 1 

P r o o f . If it is not true, then, by Lemma 1, the vertices of P(n, k) must 
have weights 3,4, 5 , . . . , 12£ + 11 and 12£ + 12, where n = 6i + 5 , i > l . However, 
note that the sum [3 + 4 + 5 + ... + (12t + 11) + (I2t + 12)] is odd, which is a 
contradiction with Lemma 2. • 

3. A n ass ignmen t w of P(n, k) a n d i ts s t r e n g t h 

To abbreviate the explanation, let us put 

2n + 2 
3 

2n + 2 

for fi ^ 5 (mod 6) , 

+ 1 for n — 5 (mod 6) , 

for n = 2,3, 4 or 5 (mod 6) , 
3 

n — r 

n — r + 1 for n = 0 or 1 (mod 6) , 

and 

c = 2k\ 
(note that d is even and c > 0) . 
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(i) 

(2) 

(3) 

(4) 

(5) 

Define an assignment w: E(P(n,k)) —> Z + in the following way: 

w(aiai+i) = r for 1 < i < min{r, n — 1} ; 

w(ar+iar+i+i) — r — i for 1 < i < n — r — 1; 

w(ana\) = 2r — n , w(a\b\) — 1; 

w(ar+ibr+i) = i + 1 for 1 < i < n — r ; 

(6) 

w(ai+2jkbi+2jk) = 2z + 2jk - 2 

w(ai+2jk+kbi+2jk+k) = 2z + 2jk - 1 

w(bi+2jkbi+2jk+k = T 

w(ai+2ckbi+2ck) = 2z + 2ck - 2 

w(ai+2ck+kbi+2ck+k) = 2z + 2ck - 1 

™(bi+2ckbi+2ck+k) = T 

for 2 < i < k + 1 

and 

0 <j < c - 1; 

for 2 < i < l + - | - d f e ; 

(7) 

(8) 

(9) 

w(ai+2ckbi+2ck) = ^+ck + i for 2 + ! - c f c < ѓ < f c + l; 

^(ai+гcfc+fctJѓ+scfc+fc) = k + 2ck + i 

for 2 + т г — ck < i < r — k — lck; 

for all other edges e of P ( n , k) put iO(e) = 1. 

Note that (5) is used only if c > 1. It is easy to check that no edge gets two 
different assignments, and hence w is well defined. For an illustration of tO, see 
the graph P(8, 3) in Fig. 1. 

L E M M A 4. 

(i) d+\<r, 
(ii) n-r + 3 < d + 4, 

(hi) 1 + ck + k + j - <r, 

(iv) r + d + 2<3r-n+l. 

P r o o f . Consider six cases according to the residue of n modulo 6. Since 
the same procedure can be used in every case, we shall only investigate the case 
n = l (mod 6). Details for the remaining cases are left to the reader. 

If n = 1 (mod 6), then r = n J ~ — and d — ^+z— . The inequalities (i), (ii) 

and (iv) are now obvious. Rewriting (iii) in terms of n and k, we get 

k < — i — . This is clearly true for k > — — . For 1 < k < — 

n - l 
6k 

k+ 

n-1 
<5k k + k<n^l±+n+± n -"• 1 n + 1 

we have 

• 
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Figure 1. 

LEMMA 5. The strength of the assignment w is s(w) = r. 

P r o o f . We need to prove that the weight of every edge e of the graph 
P(n,k) is at most r , i.e. 1 < w(e) < r. This is obvious for the cases (1), (2), 
(3), (4), (8) and (9) of the above list. 

For the assignments of the case (5) we have 2% + 2j k — 2 < 2i + 2j k — 1 < 

2(k + l) + 2(c-l)k-l = 2ck + l = 2k -£-\ + 1 < d+1 < r. The last inequality 

is by Lemma 4(i). 

For the assignments of the case (6), one has 2i + 2ck — 2 < 2i + 2ck — 1 < 

2(l + ^-ck\+2ck-l = d+l<r. 

In the case (7), we apply Lemma 4(iii) and obtain 7-- + 2ck + i < ~ + ck + 

k + l<r. • 
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4. The irregularity of the assignment w 

LEMMA 6. The assignment w is irregular. 

P r o o f . The assignment w yields the below listed weight wt for the vertices 
of the graph P(n, k). Divide them into ten lists -4(1),..., -4(10) in the following 
way: 

-4(1): wt(bi) = 3, wt(br+i) = i + 3 f o r l < z < n - r . 
These weights create a sequence 

S(l) = { 3 , 4 , . . . , n - r + 3}. 

A(2) : wt(bi+2ck) = - | + cfc + ѓ + 2 for 2 + - | - c f c < ѓ < f c + l , 

Similarly, 

-4(2) : 

5(2) = {d + 4, d + 5, . . . , - | + cfc + fc + 3 } . 

A(3) : wt(bi+2ck+k) = 2ck + k + i + 2 for 2 + - | - cfc < z < r - fc - 2cfc, 

5(3) = { | + cfc + fc + 4 , . . . , r + l, r + 2 } . 

wt(bi+2jk) = r + 2jfc + 2i - 1 1 for 2 <i < k + 1 

{ ^4(4)- , 
wt(bi+2jk+k) = rJr 2jk + 2i J and 0 <j < c - 1, 

5(4) = {r + 3, r + 4 , . . . , r + 2cfc + 2}. 
(Note that 5(4) is empty if c == 0). 

í wt(bi+2ck) = r + 2cfc + 2i - 1 1 „ d 
^4(5): < ' . ^ ^ for 2 < i < l + ^ - c f c , 

[ wt(bi+2ck+k) = r*2ck + 2i J - - 2 ' 
5(5) = {r + 2cfc + 3, r + 2cfc + 4 ; . . . , r + d + 2}. 

wt(ai) = 3 r - r . . + i = 2 r - i + 2 for i = n - r + 1, 

>t(ar+i) = 2r-^i + 2 

5(6) = {3r - n + 1, 3r - n + 2 , . . -, 2r + 1}. 

[ wt(ar+i) = 2r-~i + 2 for 1 < ѓ < n - r , 

A(7) • { w-(°.+2jfc) = V * 2jfc + 2i - 2 1 
\ wt(ai+2jfc+fc) = V + 2jfc + 2i - 1 J 

5(7) = {2r + 2, 2r + 3,..., 2r + jfih + 1}. 
(Note that 5(7) is empty if c =* g)' 

for 2 <ѓ < fc + 1 

and 0 <j < c — 1, 
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J *«a,+2ct) = 2r + 2ck + 2i-2) ^ ^ < . < ^ ± _ 
\ wt(ai+2ck+k) = 2r + 2ck + 2i-l f ~ 2 

S(8) = {2r + 2ck + 2, 2r + 2ck + 3 , . . . , 2r + d + 1}. 

A(9) : wt(ai+2ck) = 2r + ck + f + i for 2 + - | - ck < i < k + 1, 

5(9) = J2r + d + 2, 2r + d + 3 , . . . , 2 r + ck + k + - | + l } . 

^L(IO) : wt(ai+2ck+k) = 2r + 2ck + k + z for 2 + ^-ck <i <r-k-2ck, 

5(10) = J2r + ck + k + - | + 2 , . . . , 3r - 1, 3 r} . 

Now it is a routine matter to verify that : 

(i) every vertex of P (n , k) is in the list A(m) for a suitable ra; 
(ii) for every m = 1, 2 , . . . , 10, 5(m) is a finite arithmetical sequence with 

difference 1 (if it is not empty); 
10 

(iii) | J S(m) is the set of 2n mutually different values because max S(m) 
m—l 

< m i n S ( m + 1) for every m = 1, 2 , . . . , 9, and c > 1 (for m — 1 by 
Lemma 4 (ii), and for m — 5 by Lemma 4 (iv)). 
In the case c = 0, it is also easy to see that maxS(s) < minS(t) for 
every s and r, 1 < s < t < 10, for which the sets S(s) and S(t) are 
not empty. 

This completes the proof. • 

Now the main theorem immediately follows from Lemmas 1, 3, 5, 6. 
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