[1] BEINEKE L. W.:
Characterizations of derived graphs. J. Combin. Theory 9 (1970), 129-135.
MR 0262097 |
Zbl 0202.55702
[2] BIELAK H.:
On j-neighbourhoods in simple graphs. In: Graphs and Other Combinatorial Topics, vol. 59, Teubneг-Texte zur Mathematik, 1983, pp. 7-11.
MR 0737008 |
Zbl 0536.05058
[3] BIELAK H.:
On graphs with non-isomorphic 2-neighbourhoods. Časopis Pěst. Mat. 108 (1983), 294-298.
MR 0716415 |
Zbl 0526.05056
[4] BLASS A., HARARY F., MILLER Z.:
Which trees are link graphs. J. Combin. Theory B 29 (1980), 277-292.
MR 0602420 |
Zbl 0448.05028
[5] BLOKHUIS A., BROUWER A. E., BUSET D., COHEN A. M.:
The locally icosahedral graphs. Lecture Notes in Pure and Appl. Math., vol. 103, 1985, pp. 19-22.
MR 0826792 |
Zbl 0587.05059
[6] BOESCH F., TINDELL R.:
Circulants and their connectivities. J. Graph Theory 8 (1984), 487-499.
MR 0766498 |
Zbl 0549.05048
[7] BROWN M., CONNELLY R.:
On graphs with a constant link. I. In: New Directions in the Theoгy of Gгaphs, Academic Press, 1973, pp. 19-51..
MR 0347685
[8] BROWN M., CONNELLY R.:
On graphs with a constant link. II. Discrete Math. 11 (1975), 199-232.
MR 0364016 |
Zbl 0304.05102
[9] BULITKO V. K.:
On graphs with given vertex-neighbourhoods. Trudy Mat. Inst. Steklov. 133 (1973), 78-94.
MR 0434882
[10] BURNS D., KAPOOR S. F., OSTRAND P. A.:
On line-symmetric graphs. Fund. Math. 122 (1984), 1-21.
MR 0753009 |
Zbl 0547.05053
[12] CHILTON B. L., GOULD R., POLIMENI A. D.:
A note on graphs whose neighborhoods are n-cycles. Geom. Dedicata 3 (1974), 289-294.
MR 0357220 |
Zbl 0325.05116
[13] CRUYCE, VANDENP.:
A fìnite graph which is locally a dodecahedron. Discrete Math. 54 (1985), 343-346.
MR 0790596 |
Zbl 0571.05047
[14] DOYEN J., HUBAUT X., REYNART M.: Finite graphs with isomorphic neighbourhoods. In: Problèmes Combinaíoires et Théorie des Graphes (Colloq. Orsay 1976), CNRS, Paris, 1978, p. 111.
[15] GODSIL C. D.:
Neighbourhoods of transitive graphs and GRR's. J. Combiп. Theory B 29 (1980), 116-140.
MR 0584165 |
Zbl 0443.05047
[16] GODSIL C. D., MCKAY B. D.:
Graphs with regular neighbourhoods. Lecture Notes in Math. 829, 1980, pp. 127-140..
MR 0611188 |
Zbl 0453.05052
[18] HALL J. I.:
Graphs with constant link and small degree or order. J. Graph Theory 8 (1985), 419-444.
MR 0812408 |
Zbl 0582.05049
[20] HARARY F. PALMER E.:
A note on similar points and similar lines of a graph. Rev. Roumaine Math. Pures Appl. 10 (1965), 1489-1492.
MR 0197346
[21] HELL P.:
Graphs with given neighbourhoods I. In: Problèmes Combinatoires et Théorie des Graphes (Colloq. Orsay 1976), ONRS, Paris, 1978, pp. 219-223.
MR 0539979
[22] HELL P., LEVINSON H. WATKINS M.: Some remarks on transitive realizations of graphs. In: Proc. 2nd Carrib. Conf. on Combinatorics and Computing, Barbados, 1977, pp. 1-8.
[23] MOKAY B. D.:
Transitive graphs with fewer than twenty vertices. Math. Comp. 33 (1977), 1101-1121.
MR 0528064
[24] RYJÀČEK Z.:
On graphs with isomorphic, nonisomorphic and connected N2 -neighbourhoods. Časopis Pěst. Mat. 112 (1987), 66-79.
MR 0880933
[25] RYJÁČEK Z.:
Graphs with nonisomorphic vertex neighbourhoods of the first and second types. Časopis Pӗst. Mat. 112 (1987), 390-394.
MR 0921329
[26] SEDLÁČEK J.:
On local properties of finite graphs. Časopis Pěst. Mat. 106 (1981), 290-298.
MR 0629727
[27] SEDLÁČEK J.:
On local properties of finite graphs. Lecture Notes in Math. 1018, 1983, pp. 242-247.
MR 0730654 |
Zbl 0531.05056
[28] SEDLÁČEK J.:
Finite graphs with distinct neighbourhoods. Teubner-Texte Math. 73 (1985), 152-156.
MR 0869457
[29] TURNER J.:
Point-symmetric graphs with a prime number of points. J. Combin. Theory 3 (1967), 136-145.
MR 0211908 |
Zbl 0161.20803
[30] VOGLER W.:
Graphs with given group and given constant link. J. Graph Theoгy 8 (1984), 111-115.
MR 0732024 |
Zbl 0534.05035
[31] VOGLER W.:
Representing groups by graphs with constant link and hypergraphs. J. Graph Theory 10 (1986), 461-475.
MR 0867211 |
Zbl 0632.05034
[32] WINKLER P. M.:
Existence of graphs wiгth a given set of r-neighbourhoods. J. Combin. Theory Ser. B 34 (1983), 165-176.
MR 0703601
[33] YAP H. P.:
Some Topics in Graph Theory. London Mathematical Society, Lecture Note Series 108, Cambridge University Press, Cambridge, 1986.
MR 0866145 |
Zbl 0588.05002
[34] ZELINKA B.:
Graphs with prescribed neighbourhood graphs. Math. Slovaca 35 (1985), 195-197.
MR 0795015 |
Zbl 0579.05045
[37] ZYKOV A. A.: Problem 30. In: Theory of Graphs and its Applications, Academia, Prague, 1964, pp. 164-165.