[1] BARNA B.:
Über die Iteration reeller Funktionen I. Publ. Math. Debreczen, 7, 1960, 16- 40.
MR 0131505 |
Zbl 0112.04301
[2] BLOCK L.:
Homoclinic points of mappings of the interval. Proc Amer. Math. Soc., 72, 1978, 576-580.
MR 0509258 |
Zbl 0365.58015
[3] JANKOVÁ K., SMÍTAL J.:
A characterization of chaos. Bull. Austral. Math. Soc., 34, 1986, 283-292.
MR 0854575 |
Zbl 0577.54041
[4] MISIUREWICZ M.:
Horseshoes for mappings of the interval. Bull. Acad. Polon. Sci. Sér. Math., 27, 1979, 167-169.
MR 0542778 |
Zbl 0459.54031
[5] MISIUREWICZ M., SMÍTAL J.:
Smooth chaotic maps with zero topological entropy. Ergodic Th. & Dynam. Systems, to appear.
MR 0961740 |
Zbl 0689.58028
[6] PREISS D., SMÍTAL J.:
A characterization of non-chaotic maps of the interval stable under small perturbations. Trans. Amer. Math. Soc., to appear.
MR 0997677
[7] ŠARKOVSKII A. N.:
On cycles and the structure of continuous mappings. (Russian.) Ukrain. Mat. Ž., 17, No 3, 1965, 104-111.
MR 0186757
[8] ŠARKOVSKII A. N.:
The behavior of a map in a neighborhood of an attracting set. (Russian.) Ukrain. Mat. Ž., 18, No 2, 1966, 60-83.
MR 0212784
[9] ŠARKOVSKII A. N.: Ona problem of isomorphism of dynamical systems. (Russian.) Proc. Internat. Conference on Nonlinear Oscillations, Vol. 2, Kiev 1970, 541-545.
[10] SMÍTAL J.:
Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297, 1986, 269-282.
MR 0849479 |
Zbl 0639.54029