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A THEOREM OF SARKOVSKII CHARACTERIZING
CONTINUOUS MAPS OF ZERO
TOPOLOGICAL ENTROPY

KATARINA JANKOVA—JAROSLAV SMITAL

1. Introduction

Throughout this paper f'will be a continuous map of the compact real interval
I to itself.

For any non-negative integer n let /" be the nth iterate of f (i.e., f°(x) = x and
f"TN(x) =f(f"(x)) for every x). A pelis a periodic point of f of period n, if n is
the least positive integer with f"(p) = p. For any x, o/(x) is the limit set of the
sequene {f"(x)}:_,, and we call it the w-limit set of x.

In 1966 the following result was proved (cf. [8, p.71]).

1.1 Theorem (A. N. Sarkovskii). The next two conditions are equivalent:
C1: f has a periodic point of period different from 2", for any n.

C2: For some x, o/(x) is infinite and contains a periodic point.

This result is fundamental and very strong, and implies a number of impor-
tant consequences (cf., e.g., [3], [10], [5] or (6]). However, the original proof is
very long and even incomplete. The main aim of our paper is to give a simple,
new proof.

1.2. Remark. C1 is equivalent to each of the conditions
C3: f has a horseshoe, i.e., there are disjoint compact intervals U, V and positive

integers m, n such that

ffO)nfrVystouv

C4: fhas a homoclinic point, i.e., a point x such that there is a periodic point p # x
of f of period n with the following properties: x # p, f*"(x) = p for some
positive integer k, and for any neighbourhood U of p there is some m with

© xef™U).

This is also Sarkovskii’s result [7] and [9]. A simple proof was given later by
Block [2]. Note that this result is very strong, too (cf., e.g., [3], [4] or [10]) and
we will use it in the sequel.

Recall that Cl, and hence also the other conditions, are equivalent the
statement that f has a positive topological entropy (Misiurewicz [4]).
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2. Proof of Theorem 1.1

We begin with the following

2.1. Proposition. C2 = CI

To prove this we use a sequence of lemmas. Till the end of the proof of 2.1,
we assume that o = o,(x) is infinite and denote a = minw, b = maxw and
x, = f"(x) for every n.

2.2 Lemma. There is a ce(a, b) with f(c) = c.

Proof. It suffices to show that f(u) > u and f(v) < v for some u, ve(a, b).
Assume that, e.g.,, f(u) <u for every ue(a, b). Then a < x, < b implies
X, +1 < x,. Hence for any small € > 0 there is a sequence n(l) < n(2) < ... of
integers with x, ;) < a and x,;,.,, = b — ¢, for every i. Since lim x, ;) = a when
i — 00, we have f(a) = b — €. By the continuity of £, if ¥ > a is near to a, then
f(u) > u — a contradiction. O

2.3. Lemma. If d < c are fixed points of f contained in (a, b) and if there are
m, n with d < x,, < x, < c, then C3 is true.

Proof. Choose positive integers k, s with x,, ., > ¢ and x,,, <d. Then
f40d, x,) 0 f(x,, ) 2 [d, ). O

2.4 Lemma. Let pe o with f(p) = p. If for some de€]a, bl,d # p, f(d) = p, then
C4 is true.

Proof. If de(a, b), the set g = d, otherwise let ge(a, b) be such that
f(q) = d or f>(q) = d; this is possible since f(®) = ®. Then for any neighbour-
hood U of p there is an n with gef"(U), i.e., q is a homoclinic point of f. O

2.5 Lemma. If f(a) = a and a is an isolated point of ® then C4 is true.

Proof. Choose a neighbourhood U of a such that Un o = {a}. Let {n(k)}
be the increasing sequence of all positive integers with x,,e U and x,,_ ¢ U.
Since a is isolated we have lim x,, = a for kK —» c0. Let d be a limit point of
{X,4)_1}. Then dew and f(d) = a. Now 2.4 applies with p =a. O

2.6 Lemma. If f(a) = a or f(b) = b, then Cl is true.

Proof. Let, e.g., f(a) = a. By 2.2 there is a fixed point ce(a, b). By 2.5
we may assume that there is some pe(a, c)no with (p, c)no # 0. If f(u) < u
for all u€|a, p], then there is a sequence {x,,} converging from the left to a such
that x,,,, > p. Hence f(a) > p, which is imposible.

If f(u) > uforall ue[a, p], then there is a sequence {x,,, } converging to a with
Xmay -1 > p for any k. Let d be a limit point of {x,,4, _}. Then f(d) = a, and by
2.4 and 1.2, C1 is true.

Finally, if f(«) > u and f(v) < v for some u, ve (a, p) then there is a fixed point
de(a, p). Now since pe®, we can find m, n with d < x, < x, < ¢ and 2.3 and
1.2 applies. OO

2.7 Proof of 2.1. Let pew® be a periodic point of . We may assume that
S (p) = p (otherwise replace f by a suitable ™). By 2.6, pe(a, b). By 2.4, f(a) # p.
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If f(a) < p, then by 2.4 and the continuity of f there is some 8 > 0 such that
f(y) < p for every ye(a — 8, p]. Consequently, p = b must be the endpoint of
® — a contradiction.

Thus f(a) > p, and by 2.4 and the continuity of f we have f(y) = p for any
ye€(a — 8, p]if 8 > 0is small. Repeating this argument (and using the symmetry)
we can easily see that for every n sufficiently large, f?(x,) < p iff x, < p. Now let
g = f*. Then each of the sets w,(x), @,(f(x)) is infinite and p is an endpoint of
at least one of them. By 2.6 applied to g, g has a periodic point of period # 2"
for any n. Clearly the same is true for f. 0O

Now it remains to prove the second part of Theorem 1.1. (Note that in
Sarkovskii’s original paper [8] this proof is omitted.) In view of 1.2 it suffices to
prove the following

2.8 proposition. C3 = C2

Proof. Let C3 be true. Let g =f"". Since g is continuous there is a
sequence

(1) U=U»oU>U>.., U#U#U,#..
of minimal closed intervals such that

2) g(U ) = U for every k.

Denote by {J, };"_, the sequence

3) U, VU, U, VUU, Uy VU, ... U, VU,... Uy V ...

Since g(J,) = Ji ., for any k, there is clearly a point x € U, such that g"(x)e J,
for every n = 0. Choose yew,(x) n V' # 0. By (3) y cannot be periodic. Since
every finite w-limit set contains only periodic points (cf. [1]; however, this result
is elementary and easily provable), ®,(x) must be infinite.

It remains to prove that w,(x) contains a periodic point (of g, and hence also
of f) since w/(x) > w,(x). Put

@ lp. q1= () Us.

By (1) and (2),
®) v, 9l = g(lp, 9D

is invariant. Hence g*(x) ¢ [p, q] for any k. On the other hand, for every k there
is some n(k) with g"®(x)e U,. This along with (5) implies that pe ®,(x) or
gew,(x). Now the result follows from the next lemma, since w,(x) is in-
variant. O

2.9 Lemma. g({p, ) < {p, ¢}.
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Proof. Assume that, e.g., g(p)¢{p, ¢}. Then by (5) there is a neighbour-
hood O (p) of p such that

(6) gO@) =@, q).

Consider the following two cases A and B.

A. g(q) # q. Since by (5), g(g)€[p, q), there is a neighbourhood O(q) of f
with g(0(q)) = O(p) v (p, ql. Take a k such that U, ,, = O(p) u|p, ql U O(q).
Then by (6), U, = g°(U, 4 ») < g(0(p) v [p. q)) < [p, q], contrary to (1) and (4).

B. g(9) = gq. Set U, = [q;, b,] and take a k with q,e O(p). Let ye O(p),
vy > a,. Then g([a,, y]) < (p, q), hence by (2) and (4), g([ y, b,]) == U, _,, contrary
to the minimality of U,. 0O
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OJHA TEOPEMA INAPKOBCKOIO.
XAPAKTEPU3YIOUIASI HEMPEPbIBHBIE OTOBPAXEHUSA
C HVJIEBOW TOINOJIOTMYECKOM SHTPOIMEN

Katarina Jankova—Jaroslav Smital
Pe3rome
CTaTbs COAEPXUT HOBOE, KPATKOE JOKA3ATEJILCTBO ciieayroiuero yreepxiaenns A. H. lllapkos-
ckoro u3 1966 r.: IpousBosnbHOE HENpPEpbIBHOE OTOOpaXkeHHe OTpe3ka 00JIagaeT nepruoanyecKon

TOYKOIA, MEPHOJ KOTOPOH He SIBISIETCSA CTENEHbIO 2 TOrpa M TOJbKO TOrAA, KOTAa OHO OOjamaeT
6GECKOHEYHBIM O-TIPEAEIbHBIM MHOXECTBOM, COACPKALIMM NEPHOIMYECKHIO TOUKY.
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