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A THEOREM OF SARKOVSKII CHARACTERIZING 
CONTINUOUS MAPS OF ZERO 

TOPOLOGICAL ENTROPY 
KATARINA JANKOVA—JAROSLAV SMITAL 

1. Introduction 

Throughout this paperfwill be a continuous map of the compact real interval 
I to itself. 

For any non-negative integer n letf" be the nth iterate off(i.e.,f°(x) = x and 
fn + y (x) =f(fn(x)) for every x). A p e I is a periodic point off of period n, if n is 
the least positive integer with f"(p) = p. For any x, (of(x) is the limit set of the 
sequene {fn(x)}*=0, and we call it the (o-limit set of x. 

In 1966 the following result was proved (cf. [8, p.71]). 
1.1 Theorem (A. N. Sarkovskii). The next two conditions are equivalent: 

CI: f has a periodic point of period different from 2", for any n. 
C2: For some x, co (̂x) is infinite and contains a periodic point. 

This result is fundamental and very strong, and implies a number of impor­
tant consequences (cf, e.g., [3], [10], [5] or (6]). However, the original proof is 
very long and even incomplete. The main aim of our paper is to give a simple, 
new proof. 

1.2. Remark. CI is equivalent to each of the conditions 
C3: fhas a horseshoe, i.e., there are disjoint compact intervals £/, V and positive 

integers m, n such that 

fm(U)nfn(V)^ UuV 

C4: fhas a homoclinic point, i.e., a point x such that there is a periodic point p # x 
°ff of period n with the following properties: x ^ p, fkn(x) = p for some 
positive integer k, and for any neighbourhood U of p there is some m with 
xefmn(U). 

This is also Sarkovskii's result [7] and [9]. A simple proof was given later by 
Block [2]. Note that this result is very strong, too (cf., e.g., [3], [4] or [10]) and 
we will use it in the sequel. 

Recall that CI, and hence also the other conditions, are equivalent the 
statement that fhas a positive topological entropy (Misiurewicz [4]). 
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2. Proof of Theorem 1.1 

We begin with the following 
2.1. Proposition. C2=> CI 
To prove this we use a sequence of lemmas. Till the end of the proof of 2.1, 

we assume that co = co;(x) is infinite and denote a = min co, b = max co and 
x„ =f"(x) for every n. 

2.2 Lemma. There is a ce(a, b) with f(c) = c. 
Proof. It suffices to show th?tf(w) > u andf(i/) < v for some w, ve(a, b). 

Assume that, e.g., f(u)<u for every ue(a9 b). Then a < x„ < b implies 
xn+, < xn. Hence for any small 8 > 0 there is a sequence n(\) < n(2) < ... of 
integers with xn{i) ^ a and xn{iy+, ^ b — 8, for every /. Since lim x„(/) = a when 
/ -• oo, we havef(tf) ^ b — 8. By the continuity off if u > a is near to a, then 
f(u) > u — a contradiction. • 

2.3. Lemma. If d < c are fixed points of f contained in (a, b) and if there are 
m9 n with d <xm< x„ < c, then C3 is true. 

Proof. Choose positive integers k9 s with xm + k > c and xn + s < d. Then 
fk([d,xm])nf([xn9c])zD[d9c]. • 

2.4 Lemma. Let pe co withf(p) = p. If for some de [a9 b], d # pj(d) = p9 then 
C4 is trwe. 

P r o o f If de(a9 b), the set q = d, otherwise let qe(a, b) be such that 
f(q) = d or f2(q) = d; this is possible sincef(co) = co. Then for any neighbour­
hood U of p there is an n with qef"(U)9 i.e., q is a homoclinic point of f. • 

2.5 Lemma. If f(a) = a and a is an isolated point ofco then C4 is true. 
Proof. Choose a neighbourhood U of a such that t /nco = {a}. Let {n(k)} 

be the increasing sequence of all positive integers with xn{k)e U and xn{k)_ , ^ £/. 
Since a is isolated we have limxw(it) = a for k -> GO. Let d be a limit point of 
{xn(k)~ .}• Then deco andf(d) = a. Now 2.4 applies with p = a. • 

2.6 Lemma. Iff(d) = a or f(b) = b, //zen CI is trwe. 
Proof. Let, e.g., f(a) = a. By 2.2 there is a fixed point ce(a, b). By 2.5 

we may assume that there is some pe(a9 c) n co with (/?, c) n co ̂  0. Iff(w) < w 
for all w e [a, F], then there is a sequence {x^} converging from the left to a such 
that xn{k)+ , > p. Hence f(a) ^ p, which is imposible. 

Iff(w) ^ w for all ue [a9p]9 then there is a sequence {xw(jt)} converging to a with 
xw(A:) _ i > p for any Ac. Let d be a limit point of {xm{k) _ ,}. Thenf(d) = a9 and by 
2.4 and 1.2, CI is true. 

Finally, iff(w) > u andf(i;) < v for some u9ve (a9 p) then there is a fixed point 
de(a9 p). Now since peco, we can find m, n with d < xm< xn< c and 2.3 and 
1.2 applies. D 

2.7 Proof of 2.1. Let /?ECO be a periodic point off We may assume that 
f(p) = p (otherwise replacefby a suitablef"). By 2.6, pe (a9 b). By 2A9f(a) # p. 
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Iff(a) < P, then by 2.4 and the continuity off there is some 8 > 0 such that 
f(y) ^ P f° r every ye(a — 5, /?]. Consequently, p = b must be the endpoint of 
co — a contradiction. 

Thus f(a) > p, and by 2.4 and the continuity off we havef(y) ^ p for any 
ye (a — 5,/?] if 5 > 0 is small. Repeating this argument (and using the symmetry) 
we can easily see that for every n sufficiently large, f2(xn) < p iff x„ < p. Now let 
g =f2. Then each of the sets cog(x), cog(f(x)) is infinite and p is an endpoint of 
at least one of them. By 2.6 applied to g, g has a periodic point of period # 2" 
for any n. Clearly the same is true forf • 

Now it remains to prove the second part of Theorem 1.1. (Note that in 
Sarkovskii's original paper [8] this proof is omitted.) In view of 1.2 it suffices to 
prove the following 

2.8 proposition. C3 => C2 
Proof. Let C3 be true. Let g=f"m. Since g is continuous there is a 

sequence 

(1) [ / - - L / O D ^ D ^ D . . . , U0*U}^ U2* ... 

of minimal closed intervals such that 

(2) g(Uk + , ) = Uk for every k. 

Denote by {Jk}^=0 the sequence 

(3) U0VUXU0VU2U, U0VU3...U0VUk...U0V... 

Since g(Jk) =--> Jk + l for any re, there is clearly a point xeU0 such that g"(x)eJn 

for every n ^ 0. Choose yecog(x) n V T̂  0. By (3) y cannot be periodic. Since 
every finite co-limit set contains only periodic points (cf. [1]; however, this result 
is elementary and easily provable), co^(x) must be infinite. 

It remains to prove that cog(x) contains a periodic point (of g, and hence also 
off) since coy(x) => cog(x). Put 

00 

(4) lP,q]= f] Uk. 
k = 0 

By (1) and (2), 

(5) [p,q]=g(\p,q]) 

is invariant. Hence gk(x) $ [p, q] for any k. On the other hand, for every k there 
is some n(k) with g"{k)(x)eUk. This along with (5) implies that pea>g(x) or 
qe(ag(x). Now the result follows from the next lemma, since (og(x) is in­
variant. • 

2.9 Lemma. g({p, q}) <= {p, q}. 
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Proof. Assume that, e.g., g(p)i{p, q}. Then by (5) there is a neighbour­
hood 0(p) of p such that 

(6) g(0(p))cz(p,q). 

Consider the following two cases A and B. 
A. g(q) # q. Since by (5), g(q)e[F, q), there is a neighbourhood O(q) off 

with g(0(q)) cz 0(p) u [/?, q]. Take a k such that Uk + 2a O(p) u [F, q] u <9(q). 
Then by (6), Uk = g2(£4 + 2) cz g(0(p) u [F, q]) cz [/?, #], contrary to (1) and (4). 

B. gGq) = 9- S e t ^ A = [<*k> bk] a n d t a k e a k with akeO(p). Let ye0(F), 
y > 0*. Then g([ak, y]) cz (p, ^), hence by (2) and (4), g([y, bA ]) - Uk _ „ contrary 
to the minimality of Uk. D 
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OДHA TEOPEMA ШAPKOBCKOГO, 
XAPAKTEPИЗУЮЩAЯ HEПPEPЫBHЫE OTOБPAЖEHИЯ 

C HУЛEBOЙ TOПOЛOГИЧECKOЙ ЭHTPOПИEЙ 

Katarína Janková—Jaroslav Smital 

P e з ю м e 

Cтaтья coдepжит нoвoe, кpaткoe дoкaзaтeльcтвo cлeдyющeгo yтвepждeния A. H. Шapкoв-
cкoro из 1966 г.: Пpoизвoльнoe нeпpepывнoe oтoбpaжeниe oтpeзкa oблaдaeт пepиoдичecкoй 
тoчкoй, пepиoд кoтopoй нe являeтcя cтeпeнью 2 тoгpa и тoлькo тoгдa, кoгдa oнo oблaдaeт 
бecкoнeчным co-пpeдeльным мнoжecтвoм, coдepжaщим пepиoдичecкию тoчкy. 
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