[1] AKIYAMA J., EXOO G., HARARY F.:
The graphs with all induced subgraphs isomorphic. Bull Malaysian Math. Soc. (2) 2, 1979, 43-44.
MR 0545802 |
Zbl 0406.05058
[2] BOSÁK J.: Induced subgraphs. In: Proceedings of the Sixth Hungarium Colloquium on Combinatorics (Eger 1981), sumbitted.
[3] HARARY F., PALMER E.:
A note on similar points and similar lines of a graph. Rex. Roum. Math. Pures et Appl. 10, 1965, 1489-1492.
MR 0197346 |
Zbl 0141.21403
[5] KIMBLE R. J., SCHWENK A. J., STOCKMEYER P. K.:
Pseudosimilar vertices in a graph. J. Graph Theory 5, 1981, 171-181.
MR 0615005
[7] KRISHNAMOORTHY V., PARTHASARATHY K. R.:
Cospectral graphs and digraphs with given automorphism group. J. Combinatorial Theory B 19, 1975, 204-213.
MR 0398884 |
Zbl 0285.05108
[8] MANVEL B., REYNER S. W.:
Subgraph-equivalence of graphs. J. Combinatorics Information Syst. Sci. 1, 1976, 41-47.
MR 0505871 |
Zbl 0402.05056
[10] RUIZ S.:
Problem. In: Combinatorics 79, part II. Ann. Discrete Math. 9. North-Holland, Amsterdam 1980, 308.
MR 0597383
[11] SCHWENK A. J.:
Removal-cospectral sets of vertices in a graph. In: Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium 24. Utilitas Math. Publ. Co., Winnipeg, Manitoba 1979, Voll. II, 849-860.
MR 0561102 |
Zbl 0422.05035
[12] ŠIRÁŇ J.:
On graphs containing many subgraphs with the same number of edges. Math. Slovaca 30, 1980, 267-268.
MR 0587253 |
Zbl 0436.05056
[13] YAP H. P.:
On graphs whose edge-deleted subgraphs have at most two orbits. Ars Combinatoria 10, 1980, 27-30.
MR 0598896 |
Zbl 0457.05049
[14] YAP H. P.:
On graphs whose maximal subgraphs have at most two orbits. Discrete Math., to appear.
MR 0676432 |
Zbl 0472.05032
[15] ZASLAVSKY T.:
Uniform distribution of a subgraph in a graph. In: Proc. Colloq. Internat. sur la Théorie des Garphes at la Combinatoire (Marseille-Luminy 1981), to appear.
MR 0841354