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Math. Slovaca 33,1983, No. 1,105—119 

INDUCED SUBGRAPHS WITH THE SAME 
ORDER AND SIZE 

JURAJ BOSAK 

1. Introduction 

Let n and k be non-negative integers. The aim of this paper is to characterize 
graphs of order n, all of whose induced subgraphs of order k (possibly with some 
exceptions) have the same size, or are even mutually isomorphic. 

We admit graphs with loops or multiple edges. Some of our results are 
generalizations of results of other authors concerning only graphs without loops or 
multiple edges [1, 12]. The results of the paper have been presented at the Sixth 
Hungarian colloquium on combinatorics held in Eger, 1981 [2]. 

2. Terminology and notation 

All graphs considered in the paper are finite and undirected. An edge joining 
two different [identical] vertices is called a link [a loop, respectively]. A graph is 
said to be loopless [simple] if it has no loops [multiple edges]. A graph that is not 
loopless [simple] is said to be a pseudograph [a multigraph, respectively]. 
A loopless simple graph is called ordinary. The number of vertices [edges] of 
a graph G is called the order [the size] of G. 

Let N be the set of non-negative integers. For n e N the symbol Kn denotes the 
complete graph of order n. For m, neN—{0} let Km,n denote the complete 
bipartite graph whose first [second] part has m [n] vertices. The symbol K0 denotes 
the empty graph (the graph without vertices or edges), and G is the complemen­
tary graph to a graph G. The graph Kn is called the null graph of order n. For 
neN, n^2, the symbol Kn — e denotes the graph arising from Kn by deleting an 
edge. Given n, x, y e N, by a quasicomplete graph Q(n, x, y) we mean the graph 
of order n with every two different vertices joined by the same number x of edges 
and having at every vertex the same number y of loops. For x = 1, y = 0 we get the 
complete graph Kn, for x = y = 0 the null graph Kn. 

Vertices u and v of a graph G are said to be similar if there exists an 
automorphism a of G with a(u) = v. Vertices u and v are said to be pseudosimilar 
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if they are not similar but the vertex-deleted graphs G — u and G — v are 
isomorphic [3,4, 6, 9, 11, 13, 14]. 

Given k e N and a graph G, by a k-subgraph (called a k-section in [8]) of G we 
mean an induced subgraph of order k of G. The number of edges incident with 
a vertex v of G (the loops being counted twice) is called the degree of v in G and is 
denoted by degGf. A graph G whose vertices all have the same degree S (S e N) is 
called a regular graph of degree S = deg G. 

3. k-subgraphs with the same size 

Let n, a, b, c, deN, n^4. Denote by Dn(a, b, c, d) the graph of order n 
containing vertices u and v (u^v) joined by a edges such that each other vertex is 
joined to u (as well as to v) by b edges and to every other vertex by c edges; 
moreover, every vertex has d loops. (For a = b = cv/e get the quasicomplete graph 
Q(n, a, d).) 

Lemma 1. Let k, n eN, 3 ̂  k ^ n — 2, and let Gbea loopless graph of order n. 
Then the following assertions are equivalent: 

1. In G there exist two different vertices such that all k-subgraphs of 
G containing at least one of them have the same size. 

2. G is isomorphic to a graph Dn(a, b, c, 0) such that 

a+(k-3)b = (k-2)c. (1) 

Proof. If the second assertion holds, choose in G two vertices joined by a edges. 
It is easy to check that for these two vertices the first assertion holds. 

Conversely, let the first assertion hold for the vertices u and v. From the 
suppositions it follows that k^3 and n^5. Choose k other vertices Vi, v2, ..., vk 

and put vk+\ = u, vk+2 = v, V={v\, v2, ..., vk+2}. Let H be the subgraph of G 
induced by V. Each of the graphs Hi = H—vt, i = 1, 2, ..., k is regular because if 
we delete from H any vertex Vj (/=£i, je{\, 2, ..., k + 2}), we get a k-subgraph 
Hi,j = Hi — Vj of G with the size independent of v}. 

The regular graphs H\, H2, ..., Hk have the same degree. Since, if S = degHs> 
degHt = Tfor s, te{l,2, ..., k}, then for every vertex we V—{vs, vt} we have: if 
w is joined with vt [vs] by A [B, respectively] edges, then A-B = S-T as 
S = degHs vt = degHs w, T=degHt vs = deg//, w. Hence A — B does not depend on w. 
Thus A -B = S-T = k(A -B). As ki=l, it follows that A =B so that S=T. 

As H\, H2, ...,Hk are regular graphs of the same degree, they have the same size. 
Therefore the vertices v\, v2, ..., vk have in H the same degree. 

Suppose u and v are joined by a edges. We prove that each two the vertices v\, 
i>2, ..., vk are joined by the same number, say c, of edges. Otherwise there are 
vertices vp, vq and vr (p, q, re {1, 2, ..., k}) such that vp is joined with vq by c' 
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edges and with vr by c" edges, where c"£c'. As degn vq =degn vr> we have degHp 

Vi = degn vq-c' =£ degn vr - c" = degH/, Ur. However, degn, vq = degn, tv, since Hp 

is a regular graph. This contradiction shows that c' = c" = c 
For / = 1,2,..., k denote by 6, [65] the number of edges joining u [v, 

respectively] with vt and put 6 = 61. As the subgraphs Hi,*+i> H2,k+u ••» Hktk+U 

Hi,k+2, H2fk+2, ..., Hkyk+2 have the same size, we have 

S»Ҷ*ï1)«-S»+(
ł
2-1)«--S-+(2>-

and it easily follows that 6 = 61 = 62 =. . . = 6k = 6{ = 62 =. . . = 6* and the size of the 
graphs is 

{k-l)b + {k-l)c. 

However, Hit2 has the same size so that 

a + 2(*-2)6 + ( * ~ 2 ) c = (*-l)£> + ( * ~ *) c-

It follows that (1) holds. Q.E.D. 

Theorem 1. Let k, neN,2^k^n-2 and let G be a loopless graph of order n. 
Then the following three assertions are equivalent: 

I. All k-subgraphs of G are isomorphic. 
II. All k-subgraphs of G have the same size. 

III. G is a quasicomplete graph. 
Proof. Obviously III --> I --> II. Thus we need to prove the implication II => III 

only. Let II hold. If k = 2, then evidently III holds. Therefore we may suppose 
k^3. According to Lemma 1 G is isomorphic to Dn(a, 6, c, 0), where (1) holds. It 
is sufficient to prove that a = b = c. In G there exist vertices u and v joined by a 
edges. A A>subgraph of G not containing u and containing [not containing] v has 
the size 

(k-Vb + f-^c, 

(-) c, respectively . 

From the equality of these expressions it follows that b = c. Then (1) implies that 
a = b. Q.E.D. 
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R e m a r k s . 1 . Very recently T .Zas lavsky[15] has found a qui te different proof 
of the implication II => III. He has proved the following general result: Let r, k, 
neN,2^r^k^n — r. Let all k-subgraphs of a loopless graph G have the same 
positive number of subgraphs isomorphic to Kr. Then G is a quasicomplete graph. 
For r = 2 we obtain the implication II :-> III. 

2. In the case k = n — 1 the condition I holds iff all vertices of G are mutually 
similar (i.e. G is vertex-symmetric), as was proved for ordinary graphs in [3]. Much 
later this was given as an open problem in [10]. This assertion as well as the 
equivalence I o I I I (for 2 ^ k ^ n — 2) are (for ordinary graphs) completely proved 
in [1]; previously in [8, Theorem 5] both the assertions were given without any 
proof as "immediate". Note that if the (first) assertion is proved for ordinary 
graphs, then it can be easily extended to multigraphs and pseudographs: Since in 
such a graph G every vertex has the same number of loops, the reduction to 
loopless graphs is straightforward. The rest of the proof is the same as in [3]. 

3. The condition II for k = n — 1 is evidently equivalent to the assertion that G is 
regular. In the cases k = 0, k = l and k = n the conditions I and II are obviously 
fulfilled for every loopless graph G of order n. 

Corollary 1 (Sir an [12]). Ifk,neN,2^k^n—2 and G is an ordinary graph of 
order n in which all k-subgraphs have the same size, then G is either complete or 
null. 

Proof. This is in fact the implication II =-> III of Theorem 1 for the case that G is 
ordinary. Q.E.D. 

Corollary 2 (for ordinary graphs see [1]). Let k, neN, 2^k^n— 2 and let G be 
a graph of order n. Then the assertions I and III of Theorem 1 are equivalent. 

Proof. Evidently III implies I. Conversely, if I holds for G, then I holds as well 
for the graph G° obtained from G by deleting all loops. Therefore according to 
Theorem 1 G° is quasicomplete. If G is not quasicomplete, then G has two vertices 
with a different number of loops. However, it is easy to show that then G does not 
fulfil I (cf. the proof of Corollary 4 to Theorem 3). Q.E.D. 

4. Combinatorial inequalities and loops in induced subgraphs 

We shall need several combinatorial relations. 

Lemma 2. Let n, k, a, xeN, l^a^n — 1, x^k. Then we have: 

Proof. It is sufficient to prove that the expression on the left-hand side of the 
inequality is always less than or equal to one of the numbers 
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C71). «•(;:!) 
We distinguish six cases: 

(i) x>a/2. Then 

so that 

OL-г) 

CMnKHC::;:^-;1)} 
<) (r-TM/-.) (":-:> 

*%(;)("-l-;Hi-\)-
(ii) x<a/2. Then 

0<U) 
so that 

m-frmr-vMv-:1)} 
<:Mr-:-\yo("V-;y 

*%(;)(n:l-;aH":1)-
(iii) x = a/2, n>2k. Then 

ín-a\ / , . - * \ 

so that 

("Mr-HorM-y 
<--\)(r-;H,,:%n-:-1)-
<le;%"-:-,H:--\). 
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so that 

(iv) x = a/2, n<2k. Then 

in-a\ ( n-a \ 
\k-x) \k-x-l) 

0 (r::)-[e:I)+(":1)J (*":> 
^\x-l)(k-x) + \ x ){k-x-l)^ 

*l(';%--i'-rHr-\Y 
(v) .r = a/2, n=2k, a^k. It is easy to prove that for i^j^l we have: 

(W<2::X^)-
Hence 

o (nH 2 ; ) (T-l'H2;;?) (T-lx-7h 
• • * / \ ^ .* / \ A- / \ #V A / \ A i J. / \ A, A 1 / 

«(2;+
+

2
4)«:2r2

4)—f?:,2) (•)-*(;:?)• 
(vi) x = a/2, n=2k,a<k. Using the substitution a' = 2k — a we get the case (v). 

Q.E.D. 

Lemma 3. Let n, keN, AZ^2 , k^rz. FAefl we have: 

max {(";')• *(;:?)•(;:!)}-

k 

<n-2\ 

) if n >2k, 

2(t-ì)" "-"• 
l (;:!)ff -<»• 

Proof. If k = 0, then the assertion is evident. Otherwise it suffices to distinguish 
the possibilities n>2k, n=2k and n<2k. Q.E.D. 
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Lemma 4. Let n, k, a, xeN, l^a^n — l, x^k^n. Then we have: 

max max 

(V)»- >2k, 

rø (;:;)}-rø *"-»«. 
1 tf n=2k = 2, 

n-Ъ (Г-i) * -<2k. 

Proof. In the case n = 2 , k = 1 the assertion is evident. Otherwise it suffices to 
take into consideration that 

fV)-(J)(;:J). 
« = ( ? ) (;:?)• 

(;:i)-(i)(;:i) 
and to use Lemmas 2 and 3. Q.E.D. 

If k, neiV, n ^ 2 , denote by f(k, n) the greatest seN such that there exists 
a graph of order n having at least s mutually isomorphic k-subgraphs and 
containing at least two vertices with a different number of loops. Evidently for any 
neN, n^2 we have: /(0, n)=f(n, /i) = l, / ( l , n)=f(n-1, n) = n-\ and 
/(k, «) = 0for keN, A:>rz. 

Theorem 2. Let fc, neN, n^2, k^n. Then the maximal number of mutually 
isomorphic k-subgraphs of a graph of order n having two vertices with different 
numbers of loops is 

f(k,n) = 

( ; : . ' ) » - <2k, 

2(П

kZ])ifn=2kФ2, 
1 if n=2k = 2, 

(V)"» >2k. 
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Proof. Choose a and x in such a way that the expression 

o (;::) 
is maximal under the conditions 

l^a^n-1, 
O^x^k. 

Observe that the above expression gives the number of k-subgraphs of Kn(a) 
isomorphic to Kk(x). (Here Kn(a) denotes the graph arising from Kn by adding one 
loop to a different vertices.) Hence 

/ < * • » ) » ( ; ) ( ; : ; ) 

Let G b e a graph of order n with f(k, n) mutually isomorphic A>subgraphs and 
with two vertices having different numbers of loops. Let A be the set of vertices of 
G possessing the greatest number of loops. Put \A\ = a'. Obviously 1 ̂ a ' ^ n — 1. 
Isomorphic k-subgraphs of G must evidently have the same number x' of vertices 
of A, therefore there is an x' eN, x'^k, such that 

A*. «>0(;:;K) (;:;)• 
The rest of the proof follows from Lemma 4. Q.E.D. 

Corollary. Let k, neN, 2^k^n. Then we have: 

'n—2\ r/1 x^(n\ (n—2\ 

(;:ЇH*-K;M;:Ї)-
Proof. It is sufficient to check the validity of the inequalities in all four cases 

from Theorem 2. Q.E.D. 
The following weaker result will be useful for us. 

Lemma 5. Let k, neN,2^k^n-l. If a graph G of order n has at least 

n-2 

( ; ) -

mutually isomorphic ^-subgraphs, then all the vertices of G have the same number 
of loops. 

Proof. Obviously 
n — 2 ín—2\ il'ì) 
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so that by Corollary to Theorem 2 we have 

and the assertion follows. Q.E.D. 

5. Pseudosimilar vertices and exceptional it-subgraphs 

Theorem 3. Let k, n e IV, 3 ̂  k ^ n — 2. Let G be a loopless graph of order n. 
Then the following three assertions are equivalent: 

I. In G there exist 

o-i 

k-subgraphs with the same size and one k-subgraph with a different size. 
II. In G there exist at least 

n-2 

\kj~nr 
but at most 

o-
o-i 

k-subgraphs with the same size. 
III. k = n — 2 and G is isomorphic to a graph D„(a, b, c, 0), where (1) holds but 

a = b = c does not hold. 
Proof. The implication I ---> II is evident. 
II --> III. In G there are at least 

/n\ n-2 
\k) k 

k-subgraphs with the same size so that at most (n — 2)Ik k-subgraphs have another 
size. Hence there exist two vertices not belonging to any of these latter exceptional 
k-subgraphs and the suppositions of Lemma 1 are fulfilled. Thus G is isomorphic 

to some Dn(a, b, c, 0) with (1) valid. If a = b = c, then all ( , J k-subgraphs have 

the same size, contrary to the supposition of II. 
Let k^n — 3. Then the k-subgraphs of G that contain one or both of the two 

vertices joined by a edges have size 

(k-l)b + {k~1) c = a + 2(k-2)b + (k~2) c 
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and the remaining A:-subgraphs of G have size 

fk 

If 
(Э «• 

(*-!,».(*-') c-Qc. 
then all k-subgraphs of G have the same size, contrary to II. Therefore the equality 
does not hold. Then the number of k-subgraphs of G with the same size is at most 

max irM-rňHs-"-?-
which contradicts II. Hence k = n—2 and III holds. 

Ill --> I. Let u and v be the vertices joined in Dn(a, b, c, 0) by a edges. Evidently 
all k-subgraphs of G containing u or v have 

( * - l ) f t + ( * ~ *) c = a + 2(k-2)b + (k~ 2 ) c 

edges. The number of such k-subgraphs of G is 

If the remaining k-subgraph of G has the same size, then 

(*-.,».(*- >-©<• 
It follows, as before, that 1? = c and a = b, contrary to III. Q.E D. 

Corollary 1. Let k, neN, 3 ̂  k ^ « — 2. Let G be a graph of order n. Then the 
following three assertions are equivalent: 

I. In G there exist 

D i 

mutually isomorphic k-subgraphs and the remaining k-subgraph is not isomorphic 
to them. 

II. In G there exist at least 
n\ n-2 

\k) k ' 
but at most 

D- 1 

mutually isomorphic k-subgraphs. 
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III. k=3, n=5 and G is isomorphic to a graph D5(a, b, c, d), where a = c, 
a*b. 

Proof. Obviously III implies I and I implies II. We prove the implication 
II--Mil. 

If II holds, then by Lemma 5 G has in every vertex the same number d of loops. 
After deleting them there arises a graph that is (by Theorem 3, implication 
II =->III) isomorphic to some Dn(a, b, c,0), where k = n-2, (1) is true, but 
a = b = c does not hold. Therefore G is isomorphic to a graph Dn(a, b, c, d). If 
a = b or b = c, then from (1) it follows that a = b = c so that all A>subgraphs of G 
are mutually isomorphic — a contradiction. Therefore a^b and bi= c. Distinguish 
two cases: 

A. k = 3 so that n=5. From (1) it follows that a = c and III holds. 
B. k ^ 4 so that n ̂  6. If a = c, from (1) it follows that (k - 3)b = (k - 3)a, which 

is impossible, as ki=3 and aj=b. Therefore a, b and c are mutually different. 
However, then G has three mutually non-isomorphic fc-subgraphs: The first 
containing both u and v, the second only one of u and v, the third neither u nor v 
(where u and v are vertices joined by a edges). But then the number of mutually 
isomorphic fc-subgraphs of G is less than 

Ö-И*")-и - 2 

which contradicts II. Q.E.D. 
It is easy to find an analogous result for k = 2: 

Corollary 2. Let s, neN, n>4 and 

fn-1 
(*)<•«© 

Let G be a graph of order n. Then the following assertions are equivalent: 
I. In G there exist s mutually isomorphic 2-subgraphs. 

II. Every vertex of G has the same number of loops and in G there exist s pairs of 
vertices joined by the same number of edges. 

Proof. Evidently II implies I. Conversely, if I holds, then II follows from 
Theorem 2 for k = 2, n>A, as s>f(2, n). Q.E.D. 

Remarks. 1. For every n^3 there exists a graph G of order n with 

(%-') 

mutually isomorphic 2-subgraphs that has two vertices with different numbers of 
loops, e.g. the graph of order n and size 1 having a single loop. 
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2. In the case k = n — 1 it is also possible that all ^-subgraphs of G are, with 
exactly one exception, isomorphic. A sufficient condition for this is that all vertices 
of G, with exactly one exception, are mutually similar. This condition is also 
necessary if F(n)^n-2 for any neN, n^8, where F is the function defined 
below in the following problem. 

It is well known [3, 4, 6, 7] that for n e N there exists a graph of order n with 
pseudosimilar vertices iff n^8. Such an example can be constructed from the 
graph of Fig. 1 by adding n - 8 isolated vertices (if we wish to have a connected 
example for any n^8, we may take the complementary graph). Evidently, the 
vertices u and v are pseudosimilar. 

Fig.l 

Problem. For n e N, n ^ 8 determine the maximal cardinality F(n) = \X\ of a set 
X of vertices of a graph G of order n satisfying the following conditions: 

1. Every two vertices of X are similar or pseudosimilar in G. 
2. In X there exists a pair of pseudosimilar vertices of G. 

Remark. Let neN, n^8. From Remark 2 after Theorem 1 it follows that 
F(n)^n-1. It is easy to prove that F(n)^2[n/8]. An example of G of order n 
with \X\ = 2[n/8] can be constructed using [n/8] disjoint copies of a graph of Fig. 1 
and adding n — 8[n/8] isolated vertices. (The complementary graphs have the same 
property.) 

Various constructions of graphs with pseudosimilar vertices are given in [5, 7]. 

Corollary 3. Let k, neN, 2^k^n-2. Let G be an ordinary graph of order n. 
All the k-subgraphs of G, with at most one exception, are isomorphic if and only if 
one of the following cases occurs: 

1. G is complete or null. 

2. k = 2 and G is isomorphic to K„ — e or Kn — e. 

3. k = 3, n=5 and G is isomorphic to K2,3 or K23. 
Proof. This follows from Corollary 1 and from Theorem 1. 

Corollary 4. Let k, neN, k=/=n-l. Let G be a graph of order n. ЛП 
k-subgraphs of G, with exactly one exception, are isomorphic if and only if one of 
the following cases occurs: 
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1. k = 1 and all vertices of G, with just one exception, have the same number of 
loops. 

2. k = 2, all the vertices of G have the same number of loops and all pairs of 
(different) vertices of G, with just one exception, are joined by the same number of 
edges. 

3. k = 3, n = 5 and G is isomorphic to a graph D5(a, b, c, d), where a = c,ai^b. 
Proof. If case 1, 2 or 3 occurs, then all ^-subgraphs of G, with just one 

exception, are isomorphic. 
Conversely, if the above assertion is valid, then obviously l^k^n— 2. If A: = 1, 

then case 1 occurs. Therefore suppose that 2^k^n— 2 so that n^4. 
Let G have vertices v0 and vt with different numbers of loops. In G there exist at 

least k other vertices. Choose among them k — 1 vertices v2, v3, ...,vk such that the 
^-subgraph H0 [Hi] induced by the set {v0, v2, t>3, ..., vk} [{vu v2, v3, ..., i r ­
respectively] is not exceptional. As H0 and Hi have different numbers of loops, 
they cannot be isomorphic. Therefore every vertex of G has the same number of 
loops. 

If k = 2, by Corollary 2 case 2 occurs. (The case n = 4 can be easily completed 
from Theorem 2.) If k ^ 3 , then according to Corollary 1 case 3 occurs. Q.E.D. 

Remark. In Theorem 1 [Theorem 3] the condition that G is loopless cannot be 
deleted as shown by the example of Fig. 2 [Fig. 3] for k = 2 [k = 3, respectively], 
n=5. 

Fig.2 Fig.З 

The situation when loops are present has been partially solved in Corollary 2 to 
Theorem 1 and Corollaries 1, 2 and 4 to Theorem 3. Further results can be 
obtained in the following manner. Given n, keN— {0} and a graph G of order n. 
denote by G(k) the graph constructed from G in which every link of G is replaced 
by k — 1 links (with the same end vertices) and every loop of G is replaced by n - I 
links, joining the end vertex of the deleted loop with all the remaining vertices of G 
(one to each other vertex). Evidently G(k) is a loopless graph in which any 
A:-subgraph has a size k — 1 times as great as the corresponding k-subgraph in G. 
Therefore we have: 
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Lemma 6. Let k, n e N — {0} and Gbe a graph of order n. Two sets of k vertices 

induce in G k-subgraphs with the same size if and only if this is true in G(k). 

Theorem 4. Let k, n and s b& positive integers and Gbe a graph of order n. All 

the k-subgraphs of G [all with exactly s exceptions] have the same size if and only 

if all the k-subgraphs of G(k) [all with exactly s exceptions, respectively] have the 

same size. 

Proof. This follows from Lemma 6. Q.E.D. 

R e m a r k s . 1. Theorem 4 reduces the problem of the equality of the sizes to the 

corresponding problem for loopless graphs solved in Theorems 1 and 3. 

2. Results of this paper will be used in further works concerning some invariants 

of graphs connected with the structure of induced subgraphs of a graph. 

3. P. E r d o s has suggested studying analogous problems for hypergraphs (oral 

communication, Eger, July 1981). 
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ПОРОЖДЕННЫЕ ПОДГРАФЫ С ОДИНАКОВЫМ ПОРЯДКОМ И РАЗМЕРОМ 

1ига] Во§ак 

Резюме 

В статье дается характеризация конечных неориентированных графов, в которых все порож­
денные подграфы с заданным числом вершин (возможно, с некоторыми исключениями) имеют 
одинаковое число ребер, или даже изоморфны. Обобщаются результаты Акияма, Эксы 
и Харари [1] и Шираня [12], касающиеся графов без петель и кратных ребер. При помощи 
комбинаторных неравенств находится максимальное число взаимно изоморфных порожденных 
подграфов графа, содержащего вершины с различным числом петель. 
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