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INDUCED SUBGRAPHS WITH THE SAME
ORDER AND SIZE

JURAJ BOSAK

1. Introduction

Let n and k be non-negative integers. The aim of this paper is to characterize
graphs of order n, all of whose induced subgraphs of order k (possibly with some
exceptions) have the same size, or are even mutually isomorphic.

We admit graphs with loops or multiple edges. Some of our results are
generalizations of results of other authors concerning only graphs without loops or
multiple edges [1, 12]. The results of the paper have been presented at the Sixth
Hungarian colloquium on combinatorics held in Eger, 1981 [2].

2. Terminology and notation

All graphs considered in the paper are finite and undirected. An edge joining
two different [identical] vertices is called a link [a loop, respectively]. A graph is
said to be loopless [simple] if it has no loops [multiple edges]. A graph that is not
loopless [simple] is said to be a pseudograph [a multigraph, respectively].
A loopless simple graph is called ordinary. The number -of vertices [edges] of
a graph G is called the order [the size] of G.

Let N be the set of non-negative integers. For n € N the symbol K, denotes the
complete graph of order n. For m, ne N— {0} let K, . denote the complete
bipartite graph whose first [second] part has m [n] vertices. The symbol K, denotes
the empty graph (the graph without vertices or edges), and G is the complemen-
tary graph to a graph G. The graph K, is called the null graph of order n. For
n €N, n=2, the symbol K, — e denotes the graph arising from K, by deleting an
edge. Given n, x, y € N, by a quasicomplete graph Q(n, x, y) we mean the graph
of order n with every two different vertices joined by the same number x of edges
and having at every vertex the same number y of loops. For x =1, y =0 we get the
complete graph K,, for x=y =0 the null graph K.

Vertices u and v of a graph G are said to be similar if there exists an
automorphism a of G with a(u) =v. Vertices u and v are said to be pseudosimilar
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if they are not similar but the vertex-deleted graphs G—u and G—v are
isomorphic [3, 4, 6, 9, 11, 13, 14].

Given k € N and a graph G, by a k-subgraph (called a k-section in [8]) of G we
mean an induced subgraph of order k of G. The number of edges incident with
a vertex v of G (the loops being counted twice) is called the degree of v in G and is
denoted by degsv. A graph G whose vertices all have the same degree S (Se N) is
called a regular graph of degree S=degG.

3. k-subgraphs with the same size

Let n, a, b, ¢, de N, n=4. Denote by D.(a, b, ¢, d) the graph of order n
containing vertices u and v (u# v) joined by a edges such that each other vertex is
joined to u (as well as to v) by b edges and to every other vertex by c¢ edges;
moreover, every vertex has d loops. (For a = b = ¢ we get the quasicomplete graph

Q(n, a, d).)

Lemma 1. Let k, neN, 3<k<n-—2, and let G be a loopless graph of order n.
Then the following assertions are equivalent:

1. In G there exist two different vertices such that all k-subgraphs of
G containing at least one of them have the same size.

2. G is isomorphic to a graph D,(a, b, c, 0) such that

a+(k=3)b=(k-2)c. (1)

Proof. If the second assertion holds, choose in G two vertices joined by a edges.
It is easy to check that for these two vertices the first assertion holds.

Conversely, let the first assertion hold for the vertices u and v. From the
suppositions it follows that k=3 and n=5. Choose k other vertices v:, v, ..., Uk
and put vks1=U, Vks2=v, V={v1, V2, ..., Uk+2}. Let H be the subgraph of G
induced by V. Each of the graphs H=H—v;, i=1, 2, ..., k is regular because if
we delete from H; any vertex v; (j# i, je{l,2, ..., k+2}), we get a k-subgraph
H, ;= H, — v; of G with the size independent of v;.

The regular graphs H;, H., ..., H; have the same degree. Since, if S =deg H, >
degH,=Tfors, te{l,2, ..., k}, then for every vertex we V — {v,, v.} we have: if
w is joined with v, [v.] by A [B, respectively] edges, then A—B=S-T as
S=degn, v: =degn, w, T=degu, v. =degy, w. Hence A — B does not depend on w.
Thus A—B = S— T = k(A — B). As k+#1, it follows that A = B so that S=T.

As H,, H,, ..., H, are regular graphs of the same degree, they have the same size.
Therefore the vertices vi, v, ..., Uk have in H the same degree.

Suppose u and v are joined by a edges. We prove that each two the vertices v,
V2, ..., Ux are joined by the same number, say c, of edges. Otherwise there are
vertices v,, v, and v, (p, q, r€{1, 2, ..., k}) such that v, is joined with v, by ¢’
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edges and with v, by ¢” edges, where ¢"# c'. As degy v, =degu Ur, We have degy,
=degu v, — ¢’ #degu v, — " =degu, v.. However, degy, v, =degsy, vr, since H,
is a regular graph. This contradiction shows that ¢’ =c"=c.
For i=1,2,..., k denote by b; [b}] the number of edges joining u. [U,
respectively] w1th v; and put b =b,. As the subgraphs Hi,x+1> Ha.k+1, ooy Hicks1, .
H,, k+2, H3, k42, ..., Hx x+2 have the same size, we have

Zbi+(k;1) C=2b.~+(k;1) c=...=2b,~+(k;1> c=

i1 i#2 ixk

_;b +(k21) c—;b +(k21) = —g;b’+(k;1)c

and it easily follows that b=b,=b,=...=b =bi =b}=...= bk and the size of the
graphs is

(k—1)b+<k;1) c.

However, H; , has the same size so that

'a+2(k—2)b+(";2) c=(k—1)b+<k;1) c.

It follows that (1) holds. Q.E.D.

Theorem 1. Let k, ne N, 2< k<n—2 and let G be a loopless graph of order n.

Then the following three assertions are equivalent:
I. All k-subgraphs of G are isomorphic.
II. All k-subgraphs of G have the same size.

III. G is a quasicomplete graph.

Proof. Obviously III = I = II. Thus we need to prove the implication II = III
only. Let II hold. If k=2, then evidently III holds. Therefore we may suppose
k=3. According to Lemma 1 G is isomorphic to D,.(a, b, c, 0), where (1) holds. It
is sufficient to prove that a=b =c. In G there exist vertices u and v joined by a
edges. A k-subgraph of G not containing u and containing [not containing] v has
the size

(k—l)b+<k;1) c,

k .
[(2) c, respectlvely] .

From the equality of these expressions it follows that b = c¢. Then (1) implies that
a=b. QE.D.
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Remarks. 1. Very recently T. Zaslavsky [15] has found a quite different proof
of the implication II = III. He has proved the following general result: Let r, k,
neNlN,2<r<k=<n-—r. Let all k-subgraphs of a loopless graph G have the same
positive number of subgraphs isomorphic to K.. Then G is a quasicomplete graph.
For r=2 we obtain the implication II = IIL

2. In the case k =n—1 the condition I holds iff all vertices of G are mutually
similar (i.e. G is vertex-symmetric), as was proved for ordinary graphs in [3]. Much
later this was given as an open problem in [10]. This assertion as well as the
equivalence I<>11I (for 2=< k <n —2) are (for ordinary graphs) completely proved
in [1]; previously in [8, Theorem 5] both the assertions were given without any
proof as “immediate”. Note that if the (first) assertion is proved for ordinary
graphs, then it can be easily extended to multigraphs and pseudographs: Since in
such a graph G every vertex has the same number of loops, the reduction to
loopless graphs is straightforward. The rest of the proof is the same as in [3].

3. The condition II for k = n — 1 is evidently equivalent to the assertion that G is
regular. In the cases k=0, k=1 and k = n the conditions I and II are obviously
fulfilled for every loopless graph G of order n.

Corollary 1 (Sirdn [12]). Ifk, ne N,2<k<n—2 and G is an ordinary graph of
order n in which all k-subgraphs have the same size, then G is either complete or
null.

Proof. This s in fact the implication II = III of Theorem 1 for the case that G is
ordinary. Q.E.D.

Corollary 2 (for ordinary graphs see [1]). Letk, ne N,2<k<n—2 and Ilet G be
a graph of order n. Then the assertions 1 and 111 of Theorem 1 are equivalent.

Proof. Evidently III implies I. Conversely, if I holds for G, then I holds as well
for the graph G° obtained from G by deleting all loops. Therefore according to
Theorem 1 G°is quasicomplete. If G is not quasicomplete, then G has two vertices
with a different number of loops. However, it is easy to show that then G does not
fulfil I (cf. the proof of Corollary 4 to Theorem 3). Q.E.D.

4. Combinatorial inequalities and loops in induced subgraphs

We shall need several combinatorial relations.
Lemma 2. Let n, k, a, xe N, 1<a<n-—1, x<k. Then we have:
a\ (n—a n—1 n—2 n—1
() G =max{("c") 22 25) (:21)}-
Proof. It is sufficient to prove that the expression on the left-hand side of the

inequality is always less than or equal to one of the numbers
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We distinguish six cases:
(i) x>a/2. Then

so that

)+ ("2 )]<
)

(ii) x<a/2. Then

(fﬁ)s(xil)

(G2 =QE)+ ()] <
() (22O (7)<
syg{)(y)(ﬂ 1- a) (nkl)

(iii)) x=a/2, n>2k. Then

(k)=(e3%)
k—x) \k—-x+1

()G =1G2)+ (G2
(2 (2 () ()<
<2 ()G25)=GoD)-

so that

so that
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(iv) x=a/2, n<2k. Then
n—a)<( n—a )
(k—x “lk—-x—-1
so that
a\ (n—a\_[[fa—1 a—1 n—a
(2) G20~ G)+ ()G 25)=
a—-1\/n—a a—1 n—a
S(x—l) (k—x>+( x )(k—x—l)s
S fa—1 n—a \_(n-1
syzo( y )(k—l—y)_<k—1)'

(v) x=a/2, n=2k, a=k. It is easy to prove that for i=j=>1 we have:
24\ (2] 2i+2 2j—2)
(i)(j)s(i+1)<j—1 :

Hence

(a) (n—a)_(Zx) <2k—2x)<(2x+2) <2k—2x—2><
x/ \k—x/) \x k—x ) \x+1 k—-x—-1/"
<<2x+4) <2k—2x—4)< <(2k—2> (2)_2(n—2)
TA\x+2)\k—x-2 /7 Vk=1)\1) " \k-1)"

(vi) x=a/2, n =2k, a< k. Using the substitution a’ =2k — a we get the case (v).
Q.E.D.

Lemma 3. Let n, ke N, n=2, k<n. Then we have:
([ /n—1\ .
(" ) if n>2k,

our{("1) 22 () 273 e

n—1\ .
- (k2y) i n<2k

Proof. If k =0, then the assertion is evident. Otherwise it suffices to distinguish
the possibilities n>2k, n=2k and n<2k. Q.E.D.
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Lemma 4. Let n, k, a, xe N, 1<a<n—1, x<k<n. Then we have:

r (n—1\ .
< X >1f n>2k,

ay(n—a\l_ [, (n—2\ .. _
mgxmgx{(x) (k—x)}_ 2(k—1) if n=2k+2,

1 if n=2k=2,

n—1\ .
L (k—l) if n<2k.

Proof. In the case n =2, k=1 the assertion is evident. Otherwise it suffices to
take into consideration that

("")=(6) (=o)
k ) \0o/\k-0/’
2(:-0)=() (=9
k—1)" \1/\k-1)"
(:=1)=() (=)
k—=1) \1)\k-1
and to use Lemmas 2 and 3. Q.E.D.
If kK, neN, n=2, denote by f(k, n) the greatest s € N such that there exists
a graph of order n having at least s mutually isomorphic k-subgraphs and
containing at least two vertices with a different number of loops. Evidently for any

neN, n=2 we have: f(0,n)=f(n,n)=1, f(1, n)=f(n—1,n)=n—-1 and
f(k,n)=0 for ke N, k>n.

Theorem 2. Let k, n€ N, n=2, k<n. Then the maximal number of mutually
isomorphic k-subgraphs of a graph of order n having two vertices with different
numbers of loops is

- 1\
(Z_1> if n<2k,

f(k, n)= <2<Z:2) if n=2k#2,

1 if n=2k=2,

i (”;1) if n>2k.
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Proof. Choose a and x in such a way that the expression
(a) (n - a)
x/ \k—x

l<asn-1,
O0<x<k.

is maximal under the conditions

Observe that the above expression gives the number of k-subgraphs of K.(a)
isomorphic to Ki(x). (Here K,(a) denotes the graph arising from K, by adding one
loop to a different vertices.) Hence

() (179)

Let G be a graph of order n with f(k, n) mutually isomorphic k-subgraphs and
with two vertices having different numbers of loops. Let A be the set of vertices of
G possessing the greatest number of loops. Put [A|=a’. Obviously 1<a’<n-—1.
Isomorphic k-subgraphs of G must evidently have the same number x’ of vertices
of A, therefore there is an x’' € N, x' <k, such that ’

a'\ (n—a' a\ (n—a
= = .
flk, n) (x’) (k—x’) (x) (k—x)
The rest of the proof follows from Lemma 4. Q.E.D.

Corollary. Let k, ne N, 2<k<n. Then we have:

(¢ 23)=rtem=(2)-(77)-

Proof. It is sufficient to check the validity of the inequalities in all four cases

from Theorem 2. Q.E.D.
The following weaker result will be useful for us.

Lemma S. Let k, neN, 2<k<n _—1. If a graph G of order n has at least

( ny_n-2
0"
mutually isomorphic k-subgraphs, then all the vertices of G have the same number
of loops.
Proof. Obviously
n-2_ ( n- 2)
k k—1)
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so that by Corollary to Theorem 2 we have

e m=(3)-(20)<(0) "%

and the assertion follows. Q.E.D.

5. Pseudosimilar vertices and exceptional k-subgraphs

Theorem 3. Let k, ne N, 3<k<n—2. Let G be a loopless graph of order n.
Then the following three assertions are equivalent:
I. In G there exist
n
(k) -1

k-subgraphs with the same size and one k-subgraph with a different size.
II. In G there exist at least
( n) _n—2
k kK’

but at most

k-subgraphs with the same size.

III. k =n—2 and G is isomorphic to a graph D,(a, b, c, 0), where (1) holds but
a=b = c does not hold. )

Proof. The implication I > II is evident.

II=>III. In G there are at least

( n) _n-=2
k k
k-subgraphs with the same size so that at most (n —2)/k k-subgraphs have another

size. Hence there exist two vertices not belonging to any of these latter exceptional
k-subgraphs and the suppositions of Lemma 1 are fulfilled. Thus G is isomorphic

to some D,(a, b, c, 0) with (1) valid. If a =b =c, then all (Z

) k-subgraphs have

the same size, contrary to the supposition of II.
Let k<n—3. Then the k-subgraphs of G that contain one or both of the two
vertices joined by a edges have size

k-1

(k—l)b+( )

) c=a+2(k—2)b+<k;2) c
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and the remaining k-subgraphs of G have size
()<
5) €

(k=0p+(*5 ) e=(;)

then all k-subgraphs of G have the same size, contrary to II. Therefore the equality
does not hold. Then the number of k-subgraphs of G with the same size 1s at most

) -
ma k ) \k k k)" Tk
which contradicts II. Hence kX =n —2 and III holds.

III = 1. Let u and v be the vertices joined in D,(a, b, c, 0) by a edges. Evidently
all k-subgraphs of G containing u or v have

If

(k—l)b+(k;1> c=a+2(k—2)b+<k;2> ¢

edges. The number of such k-subgraphs of G is

(k)1

If the remaining k-subgraph of G has the same size, then

(k—l)b+(k;1> c=<§) c.

It follows, as before, that b =c and a = b, contrary to III. Q.E D.
Corollary 1. Let k, ne N,3<k<n—2. Let G be a graph of order n. Then the

following three assertions are equivalent:
I. In G there exist
n
(k) -

mutually isomorphic k-subgraphs and the remaining k-subgraph is not isomorphic
to them.
II. In G there exist at least

but at most

mutually isomorphic k-subgraphs.
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II1. k=3, n=5 and G is isomorphic to a graph Ds(a, b, c, d), where a=c,
a+b.

Proof. Obviously III implies I and I implies II. We prove the implication
11> I11. _

If IT holds, then by Lemma 5 G has in every vertex the same number d of loops.
After deleting them there arises a graph that is (by Theorem 3, implication
I1 > III) isomorphic to some D,(a, b, c,0), where k=n—2, (1) is true, but
a=b = c does not hold. Therefore G is isomorphic to a graph D.(a, b, c, d). If
a=>b or b=c, then from (1) it follows that a = b = ¢ so that all k-subgraphs of G
are mutually isomorphic — a contradiction. Therefore a# b and b# c. Distinguish
two cases:

A. k=3 so that n=5. From (1) it follows that a = ¢ and III holds.

B. k=4 so that n=6.If a =, from (1) it follows that (k —3)b =(k — 3)a, which
is impossible, as k#¥3 and a# b. Therefore a, b and c are mutually different.
However, then G has three mutually non-isomorphic k-subgraphs: The first
containing both u and v, the second only one of u and v, the third neither « nor v
(where u and v are vertices joined by a edges). But then the number of mutually
isomorphic k-subgraphs of G is less than

(b)-1=(0) %"
k “\k k °
which contradicts II. Q.E.D.

It is easy to find an analogous result for k=2:

Corollary 2. Let s, ne N, n>4 and

("27)==()-

Let G be a graph of order n. Then the following assertions are equivalent:

I. In G there exist s mutually isomorphic 2-subgraphs.

II. Every vertex of G has the same number of loops and in G there exist s pairs of
vertices joined by the same number of edges.

Proof. Evidently II implies I. Conversely, if I holds, then II follows from
Theorem 2 for k=2, n>4, as s>f(2, n). Q.E.D.

Remarks. 1. For every n=3 there exists a graph G of order n with

(")
2
mutually isomorphic 2-subgraphs that has two vertices with different numbers of

loops, e.g. the graph of order n and size 1 having a single loop.
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2. In the case k=n—1 it is also possible that all k-subgraphs of G are, with
exactly one exception, isomorphic. A sufficient condition for this is that all vertices
of G, with exactly one exception, are mutually similar. This condition is also
necessary if F(n)<n—2 for any ne N, n=8, where F is the function defined
below in the following problem.

It is well known [3, 4, 6, 7] that for n € N there exists a graph of order n with
pseudosimilar vertices iff #=8. Such an example can be constructed from the
graph of Fig. 1 by adding n — 8 isolated vertices (if we wish to have a connected
example for any n=8, we may take the complementary graph). Evidently, the
vertices u and v are pseudosimilar.

-

Fig. 1

Problem. For n € N, n =8 determine the maximal cardinality F(n) = |X]| of a set
X of vertices of a graph G of order n satisfying the following conditions :

1. Every two vertices of X are similar or pseudosimilar in G.

2. In X there exists a pair of pseudosimilar vertices of G.

Remark. Let ne N, n=8. From Remark 2 after Theorem 1 it follows that
F(n)<n—1. It is easy to prove that F(n)=2[n/8). An example of G of order n
with | X| =2[n/8] can be constructed using [»/8] disjoint copies of a graph of Fig. 1

- and adding n — 8[n/8] isolated vertices. (The complementary graphs have the same
property.)

Various constructions of graphs with pseudosimilar vertices are givenin [5, 7].

Corollary 3. Let k, ne N,2<k=<n—2. Let G be an ordinary graph of order n.
All the k-subgraphs of G, with at most one exception, are isomorphic if and only if
one of the following cases occurs:

1. G is complete or null.

2. k=2 and G is isomorphic to K, —e or K, —e.

3. k=3, n=5 and G is isomorphic to K, 3 or 7(:
Proof. This follows from Corollary 1 and from Theorem 1.

Corollary 4. Let k, neN, k#n—1. Let G be a graph of order n. All
k-subgraphs of G, with exactly one exception, are isomorphic if and only if one of
the following: cases occurs:
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1. k=1 and all vertices of G, with just one exception, have the same number of
loops.

2. k=2, all the vertices of G have the same number of loops and all pairs of
(different) vertices of G, with just one exception, are joined by the same number of
edges.

3. k=3, n=>5 and G is isomorphic to a graph Ds(a, b, c, d), wherea=c, a# b.

Proof. If case 1, 2 or 3 occurs, then all k-subgraphs of G, with just one
exception, are isomorphic.

Conversely, if the above assertion is valid, then obviously 1<k<n—-2.1If k=1,
then case 1 occurs. Therefore suppose that 2<k=<n—2 so that n=4.

Let G have vertices vo and v, with different numbers of loops. In G there exist at
least k other vertices. Choose among them k — 1 vertices v, vs, ..., vk such chat the
k-subgraph H, [H,] induced by the set {vo, v, Vs, ..., v} [{V1, V2, V3, ...y W),
respectively] is not exceptional. As Ho and H; have different numbers of loops,
they cannot be isomorphic. Therefore every vertex of G has the same number of
loops.

If k=2, by Corollary 2 case 2 occurs. (The case n =4 can be easily completed
from Theorem 2.) If k=3, then according to Corollary 1 case 3 occurs. Q.E.D.

Remark. In Theorem 1 [Theorem 3] the condition that G is loopless cannot be
deleted as shown by the example of Fig. 2 [Fig. 3] for k=2 [k =3, respectively],
n=>35.

Fig. 2 Fig. 3

The situation when loops are present has been partially solved in Corollary 2 to
Theorem 1 and Corollaries 1, 2 and 4 to Theorem 3. Further results can be
obtained in the following manner. Given n, k € N— {0} and a graph G of order .
denote by G(k) the graph constructed from G in which every link of G is replaced
by k —1 links (with the same end vertices) and every loop of G is replaced by n — 1
links, joining the end vertex of the deleted loop with all the remaining vertices of GG
(one to each other vertex). Evidently G(k) is a loopless graph in which any
k-subgraph has a size k — 1 times as great as the corresponding k-subgraph in G.
Therefore we have:
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Lemma 6. Let k, n € N— {0} and G be a graph of order n. Two sets of k vertices
induce in G k-subgraphs with the same size if and only if this is true in G(k).

Theorem 4. Let k, n and s be positive integers and G be a graph of order n. All
the k-subgraphs of G [all with exactly s exceptions] have the same size if and only

if all the k-subgraphs of G(k) [all with exactly s exceptions, respectively] have the
same size.

Proof. This follows from Lemma 6. Q.E.D.

Remarks. 1. Theorem 4 reduces the problem of the equality of the sizes to the
corresponding problem for loopless graphs solved in Theorems 1 and 3.

2. Results of this paper will be used in further works concerning some invariants
of graphs connected with the structure of induced subgraphs of a graph.

3. P. Erdds has suggested studying analogous problems for hypergraphs (oral
communication, Eger, July 1981).
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ITOPOXIEHHBIE TTOAIPA®BI C OJUHAKOBBIM ITOPAOKOM U PASMEPOM
Juraj Bosdk
Pe3iome
B cTaThe faeTcs xapaKTepu3aLms KOHEUHbIX HEOPHEHTHPOBAHHBIX rPadoB, B KOTOPBIX BCE MOPOXK-
eHHbIe noarpacdsl ¢ 3alaHHBIM YHCIIOM BepIIMH (BO3MOXHO, ¢ HEKOTOPBIMH HCKIIIOYEHHSIMU) HMEIOT
ouHakoBoe uucio pebGep, wim gaxe u3somopdubl. OGoOOIalOTCA pe3ynbTaThl AKHAMa, DKCBI
u Xapapu [1] u llupans [12], kacarommecs rpadoB Ge3 nerens ¥ KpaTHbIX peGep. IIpn momoum

KOMOMHAaTOPHBIX HEPAaBEHCTB HAXOAUTCA MAKCUMAJIBHOE YHCIIO B3aMMHO M30MOP(HBIX OPOXIEHHBIX
noprpacdos rpacga, conepxkamuiero BepIIMHbI C Pa3THYHbIM YHCIOM METelb.
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