Previous |  Up |  Next

Article

References:
[1] BIELECKI A. : Une remarque sur la méthode de Banach-Cacciopoli-Tikhonov dans la theorie des équations différentielles ordinaires. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4, 1956, 261-264. MR 0082073
[2] BIELECKI A. : Une remarque sur l'application de la méthode de Banach-Cacciopoli-Tikhonov dans la theorie de l'équation s=f(x, y, z, p, q). Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 4, 1956, 265-268. MR 0082074
[3] ĎURIKOVlČ V. : On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem for certain differential equations of the type uxy = f(x, y, u, ux, uy). Spisy přírodov. fak. Univ. J. E. Purkyně v Brně 4, 1968, 223-236.
[4] ĎURIKOVlČ V. : On the existence and uniqueness of solutions and on the convergence of successive aproximations in the Darboux problem for certain differential equations of the type $u_{x_1\cdots x_n}=f(x_1,\cdots,x_n,u,\cdots,u_{x_{l_1}\cdots x_{l_j}},\cdots)$. Čas. pro pěstov. mat. 95, 1970, 178-195 MR 0450758
[5] ĎURIKOVlČ V. : The convergence of successive approximations for boundary value problems of hyperbolic equations in the Banach space. Mat. Časop. 21, 1971, 33-54. MR 0355387
[6] GAJEWSKI H., GROGER K., ZACHARIAS K. : Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. MR 0636412
[7] KOOI O. : Existentie-, einduidigheids- en convergence stellingen in de theore der gewone differential vergelijkingen. Thesis V. U., Amsterdam, 1956.
[8] KOOI O. : The method of successive approximations and a uniqueness theorem of Krasnoselskii and Krein in the theory of differential equations. Indag. Math. 20, 1958, 322-327. MR 0098859
[9] KRASNOSELSKII M. A. : Two remarks on the method of successive approximations. Uspehi Mat. Nauk 10, 1955, 123-127 [in Russian]. MR 0068119
[10] KRASNOSELSKII M. A., KREIN S. G. : On a class of uniqueness theorems for the equation y'=f(t,y). Uspehi Mat. Nauk 11, 1956, 206-213 [in Russian]. MR 0079152
[11] KRATOWSKI C. : Topologie. V. I. Warszawa, 1952.
[12] LUXEMBURG W. A. J. : On the convergence of successive approximations in the theory of ordinary differential equations II. Indag. Math. 20, 1958, 540-546. MR 0124554 | Zbl 0084.07703
[13] LUXEMBURG W. A. J. : On the convergence of successive approximations in the theory of ordinary differential equations III. Nieuw Archief Voor Wiskunde 6, 1958, 93-98. MR 0124555 | Zbl 0085.30201
[14] PALCZEWSKI B., PAWELSKI W. : Some remarks on the uniqueness of solutions of the Darboux problem with conditions of the Krasnosielski-Krein type. Ann. Polon. Math. 14, 1964, 97-100. MR 0161013 | Zbl 0132.07208
[15] ROSENBLATT A. : Über die Existenz von Integralen gewöhnlichen Differentialglechungen. Archiv for Mathem. Astr. och Fysik 5 (2), 1909, 1-4.
[16] RZEPECKI B. : A generalization of Banach's contraction theorem. Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26, 1978, 603-609. MR 0515618 | Zbl 0421.47032
[17] RZEPECKI B. : Note on the differential equation F(f, y(t), y(h(t)), y'(t)) = 0. Comment. Math. Univ. Carolinae 19, 1978, 627-637. MR 0518176
[18] RZEPECKI B. : Note on hyperbolic partial differential equations I. Mathematica Slovaca 31, 1981, 243-250. MR 0621915
[19] WONG J. S. W. : On the convergence of successive approximations in the Darboux problem. Ann. Polon. Math. 17, 1966, 329-336. MR 0188579 | Zbl 0144.13704
Partner of
EuDML logo