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A NOTE ON HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS II)

BOGDAN RZEPECKI

1. Introduction

In this paper we consider the Darboux boundary problem for the equation

+) | 5o e, =1(x,3.2)

with continuous righ-hand side and conditions of the Krasnoselskii—KTrein type.
This part is closely related to Part I. In [18] there is a discussion of the existence
and continuous dependence on initial functions and the right-hand side of the
solution to the Darboux problem for the equation (+) with f satisfying the Kooi
type conditions.

The questions of the unique solution (as a limit of successive approximations)
and the continuous dependence of the solution on boundary data and right-hand
side will be considered with use of the fixed point concept (given here as
Proposition 1) due to Luxemburg [12]. For applications of the original Luxem-
burg theorem to hyperbolic partial differential equations with conditions of the
Krasnoselskii—Krein type see: V. Durikovié[3]—[5] and J.S. W. Wong[19].

M. A. Krasnoselskii [9] has proved the following version of the well-known
result of Schauder: If K is a non-empty bounded closed convex subset of a Banach
space, A is a contraction and B is completely continuous on K, and Ax + By e K
for x, y in K, then the equation Ax + Bx = x has a solution in K. In Sec. 2 we give
a modification of Krasnoselskii’s theorem which enables us to get the global
solutions of Equation (+) with f=f, + f., where fi, f. generate a contraction and
a completely continuous transformation, respectively.

Next we give some remarks on the continuous dependence of solutions of our
equation on the boundary data and on the function f. '

The results of this paper are connected with the Bielecki method ([1], [2], [6]) of
norm changing, and extend the facts of [18] and [19]. Let us remark that further
results can be obtained if the concept of a metric space with the distance function
taking its values in a normal cone in a Banach space and the Luxemburg concept
will be used. See also [16] and [17].
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2. Fixed point theorems

Let M be a non-empty set and let d be a function defined on M X M with
0<d(x,y)<+ . If d satisfies the usual axioms for metric space, then 'this
function is called a generalized metric in M. Further, if every d-Cauchy sequence in
M is d-convergent, then (M, d) is called [12] a generalized complete metric space.
Moreover, we shall use the notations of & *-space, the 6-product of £*-spaces and
a continuous mapping of £*-space into ¥*-space (see e.g. [11] pp. 83—90).

Proposition 1 (cf. [16]). Let A be an arbitrary set, let B be an £*-space and let
(M, d) be a generalized complete metric space. Suppose that F: AXB—>M,
T: A—>M are one-to-one transformations and F[A X B]c T[A]. Assume,
moreover, that there exist zoe A, 0<k <1 such that for all y in B: d(F(2,y),
Tzo)<oo, and d(F(xi, y), F(xz2,y)) < k-d(Tx, Tx:) for all x,,x.€ A with
d(Tx:, Txz2)<oo.

Then there exists a unique function ¢: B— A such that F(¢(y), y) = T(®(y))
and d(T(@(y)), Tzo)<w= for each y in B. Further, if the function F(x, -) is
continuous on B for all x e A with d(Tx, Tzo) <, then the function T(¢(")) is
continuous on B.

Proposition 2. Let E be a Banach space, let X be a non-empty subset of E, and
let K be a non-empty convex closed subset of E. Suppose we are given: T—a
one-to-one operator defined on X such that T[X] is a closed subset of E and
T[X] <K, S — a continuous mapping from K into a compact subset of E. Further, -
assume that F is a mapping from X X K to T[X] satisfying the following conditions :
() [|IF(x1, y) = F(x2, )||<k - || Tx\ — Tx:|| for every x., x. in X and y € K, where k
is a nom-negative constant less than one, and (i) ||F(x, y:.) — F(x, y2)|| <
c - |[Sy:— Sy:|| for every x € X and y,, y. in K, where c is a positive constant.

Then there exists a point xo in X such that F(xo, Txo) = Txo.

Proof. Let us put M=E, A=X and B=K. Then, all the assumptions of
Proposition 1 are satisfied and therefore there exists a mapping ¢: K— X such that
F(o(y), y) = T(@(y)) for all y in K.

We define an operator ¢ as x+— T(@(x)). Then @ maps K into itself, and

|Px — @y || =|F(@(x), x) = F(@(y), y)l|<cl|Sx — Sy|| + k|| &x — Py||.

Hence ||®x — @y||<(1 - k) 'c ||Sx — Sy|| for x, y € K, and therefore @ is continu-
ous on K. Now we prove that ®[K] is conditionally compact in E.

Indeed, let (®x.) be a sequence with x,e K for n=1. From the above
|Pxi — @x;}| < (1—k) 'c ||Sxi — Sx,|| for all i, j=1. Since S[K] is a conditionally
compact set, (Sx.) has a convergent subsequence (Sx«) and therefore (®xi) is
a Cauchy sequence. Consequently, (®xi) is a convergent subsequence of the
sequence (Dx»).
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By the Schauder Fixed Point Theorem there exists at least one vo in K such that
dvo=vo. Hence T(@(vo)) = F(@(vo), vo) = F(@(vo), Pve) = F(@(vo), T(p(vo))
and the proof is completed.

3. Assumptions and notations

Assumptions and notations given below are valid throughout this paper and will
not be repeated in formulations of particular theorems.

Suppose that G = (0, a] X (0, b], P=[0, a] X[0, b], Q=P X (— =, ©) and A is
a bounded function on P such that A(x, y)>0 for all (x, y) in G.

Let us denote:

by X — the set of all continuous functions on P;

by & — the set of pairs (o, 7) such that the functions o and 7 are, respectively, of
the class C'[0, a] and C'[0, b] satisfying the condition a(0)=7(0);

by %o — the set of all continuous functions on Q;

by F — the set of functions fe % such that |f(x,y,u) — f(x,y,v)| <
Li(x,y) lu—v| for (x,y)eG and —o<u, v<+ o, where L; is a function
(depending on f) on P with 0<<L;(x, y)< + «;

by #i — the set of all f e ¥ with L;(x, y)=A; on P, where A;>0 is a constant
(depending on function f);

by &. — the subset of &, consisting of uniformly bounded functions;

by & — the subset of Z consisting of all pairs (o, 7) of equicontinuous functions
on [0, a] and [0, b], respectively.

Moreover, we denote by C(P) the Banach space of all continuous functions on P
with the usual supremum norm |- ||.

Let us put

F, (f, 0,9) (5, ) = 0(2) +20) — 0@+ [ [ f(u, v, 2(u, v)) du o

for fe Fo, (0, T)eZ and z in X.

We ask for a function z in X satisfying the equation (+) on P, and such that
z2(x,0) = o(x) for O0<x=<a and z(0,y)=1t(y) for O<y=b. If feF and
(0, t) e Z, then the above Darboux problem for (+ ) is equivalent to the solution of
the following equation

(*) z2(x, y)=F(z, (f, 0, 7)) (x, y)

in the set X.
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4. Class Z of functions

Let fe . We say that a function f satisfies:

(i) Lipschitz—Bielecki conditions ([1], [2]), if fe€ %, and Ls(x, y)= Ay, A(x, y)
= exp (p(x +y)) on P, where p=0 is a constant;

(ii) Rosenblatt—Kooi—Luxemburg conditions ([15], [7], [13], [19]), if
If(x,y,2)| < M(x-y) for (x,y,z)€Q and Ly(x,y) = Bi(x-y)"', A(x,y)
= (x-y)"' onP, where M>0, r>—1 are constants and B;>0 is a constant
(depending on f) such that By <(r+1)*;

(iii) Krasnoselskii—Krein—Luxemburg conditions ([10], [8], [12], [14], [19)]), if
f is a bounded functionon Q, (x - y)" - |f(x, y, u) — f(x,y,v)| < Dsjju—v|*on Q

and Li(x,y) = G- (x-y)"', A(x,y) = (x- y)"¥S on P, where C;>0, D;>0,

a>0, f# and p>1 are constants such that a <1, f<a, (1—a)- VG<1 - and
p-G-(1-a) < (1-8).
In X we define the distance function d as follows : for each zi, z: in X we put

d(z1, 22) =sup {lz.(x, ))sz_ iz)(x’ y)l ((x,y)e G}.

Obviously, d is a generalized metric in X such that sup A(x, y)) ™' ||zi — 22| <
G

d(z1, z2) for all z,, z2, and therefore (cf. [19]) (X, d) is a generalized complete
metric space.

Let F be the transformation defined in Sec. 3. We introduce the following
Assupmtion (0):

(0). There exists a function z, in X such that for f € ¥ and (o, 7) € ¥ we have

2o(x, y) = F(z0, (f, 0, 7)) (x, y) = O(A(x, y))

for each (x, y) in G.

Let Assumption (0) be satisfied. The above defined F is said to satisfy the
£*-condition, if the sets &, & are considered as £*-spaces, F XZ as their
F*-product, and for every fixed z in X with d(z, zo)<o the transformation
F(z, -) maps & X & continuously into (x, d).

A y
Notice that if sup {(A(x, y))"f f A(u,v)dudv: (x,y)e G}< o and the sets
0 Jo

Z, F are endowed with the convergence, respectively:

lim (0w, T.) = (0o, To) meaning
et

lim sup {](0x(x) + 7a(y) — 0(0)) -
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= (00(x) + To(y) = 00(0))| (A(x, y))": (x, y)e G} =0

and

lim f. = fo meaning
nsos

lim sup {(A(x, y))"'Ifa(x, y, 2) = fo(x, y, 2)|: (x, ) € G, 2€ 2} =0

for every compact Q in (— o, ©),

then our transformation F satisfies the £*-condition. The proof of this fact is
similar to the proof of Remark given in [18]. Therefore it will be omitted.

The following theorem holds:

Theorem 1. Let Assumption (0) be satisfied, let the functions A - Ly (f € F) be
integrable on P, and let

ks =sup {H;l,—ﬁ J:Lyl(u, v)Li(u, v) du dv: (x, y)e G}<1.

Then, for an arbitrary f € ¥ and (o, 1) € Z there exists a unique function z, ., in
X satisfying the equation (x) on P and such that d(zo, Z¢.0,v) <.

Moreover, if F satisfies the £*-condition and sup {k;: fe ¥} <1 then (f, 0, T)
- 2(¢,0.p Maps F X Z continuously into (X, d).

Proof. Let B=% x Z. Evidently, F mapr X X B into X and d(zo, F(zo, §)) <%
for each & in B. We prove that d(F(zi, §), F(zz, §)) < k - d(z1, z2) for d(z1, 22) <
o, where k=sup {k;: fe F}.

Indeed, for (x, y)e G, Ee B and zi, z.€ X, we have

|F(z1, 8) (x, y)—F(z2, §) (x, y)|<

x ry
<d(zi, z2) -L J; A(u, v)Li(u, v) du dv

hence d(F(zi, &), F(zz, £))<k - d(zi, z2) when d(zi, z2) <. The application of
Proposition 1 completes the proof.

Remark. Each of the conditions given below implies the assumptions of
Theorem 1 for function f:

1° Lipschitz—Bielecki conditions;

2° Rosenblatt—Kooi—Luxemburg conditions ;

3° Krasnoselskii—Krein—Luxemburg conditions.

Now we prove this. The case 1° is obvious. If 2° is satisfied and n(x, y) = o(x)
+ 1(y) — o(0) with (0, T)€eZ, then
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k; = By - sup {(x cy)y - f(:f)y(u -v) du dvi (% y)€ G} =(r+1)”’B;<1

and

2(x, y) = F(zo, (f, 3, 7)) (x, y) = O((x - )" ) on G

for each zoe X such that zu(x, y) — n(x,y) = O(x-y)™") on G (in particular,
for zo(x,y) = n(x,y) + M(r+1)"'(x - y)*' on P). Finally, from 3° we obtain
kf<1 and if (0, I)E%, woe X, w..+|(x, y) = F(W", (fv g, t)) (xv Y)fOI' n=0,1, ceey
then (cf. [12], [19]) there exists an index N such that d(wn, wn.i) <o for =1 and,
in particular,

WN(X, y)—F(WN’ (fv g, 'L')) (x’ Y)= O((X : y)p\/c')
on G.

For example, we apply Lipschitz—Bielecki conditions. Let us denote by &, the
set & with the product metric generated by the usual supremum metrics. The set >
shall be considered with the pointwise convergence. We endow the sets %,, &, with
the almost uniform convergence and pointwise convergence on Q, respectively.

Using the Lebesgue Bounded Convergence Theorem and proceeding similarly as
in the proof of Corollary 2 from [18], we obtain the following result as
a consequence of Theorem 1:

Let i =1,2. For an arbitrary f e % and (o, t) € Z there exists a unique function
2. «. v in X satisfying the equation (x) on P. Moreover, if sup {Ay: f€ &} < then
(f, 0, T) = Z(.o.«y maps continuously the £*-product F: x Z: into C(P).

5. Class %, of functions

Assume that g € ¥ and h € %, are bounded functions on Q. We prove that if
(0, T)eZ and L, is an integrable function on P, then there exists a function z in X
satisfying Equation () with f=g + h.

Without loss of generality we may suppose that o(x) = t(y)=0 for (x, y) in P.
Let us put:

X=1{zeC(P): ||z||<ab(M,+ M)},

K={zeC(P):|z(x,y)|<ab(M.+Mz)-exp ‘pf f L,(u, v)du dv
0 Jo
for (x, y)e Pq,

(Tz) x, y)=exp (-p . L LyL,,(u, v)du dv)ez(x,y)forzeX,
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(S2) (x, y)=[,x‘[)yh(u, v, exp (p . J:)u‘[)UL,,(t, s)dt ds) - zZ(u, v)) dudv forzeK,
Gw,2)(x,y)= exp ff L,(u,v)du du) [(Sz) (x,y)+
+J:'Lyg(u, v, w(u, v)) du dv] for (w,2)e XxK,

where p >1 is a constant and M,, M, are numbers thet bound the functions g and
h, respectively.

It can be easily seen that G[ X X K] = T[X] =K, T[X] is closed and K is a closed
convex subset of C(P). Obviously, S is continuous on K and by Ascoli—Arzela
Theorem the set S[K] is conditionally compact. For w,, w.€ X, ze K and
(x, y)e P, we have

[ (0, v, i, v)) = 9, v, wal, v) du o<
SJ:J:L;,(u, v) [wi(u, v)— wa(u, v)| du dv =
= [ [ "L, vy e (p- [ [ Late, ) de as)
exp (=p - [ [ Latt,5) dt ds) lwi(u, v) = wale, v) | du dv<
<||Tw: = Twi| - ffL(u v)-exp ( ffL(t ) dt d.) du dv<

x y
<p~'-exp (p I f L,(u,v)du dv) I Twi = Tw:||
0 Jo

and it follows |G(wi, z) — G(w2, 2)||<p~' - || Tw:— Tw-||. Since
IG(w, z1) = G(w, z2)|| =

=sup {exp (—pJ:foyL,,(u, v) du dv) |(Sz1) (x, y) — (S22) (x, y)|: (x, y)eP}S

<||Sz1— Sz:||

for we X and zi, z2 in K, so all the conditions of Proposition 2 are satisfied.
Therefore, there exists a function zo€ X such that G(zo, Tzo (%, ¥) = (Tzo) (x, y)
for each (x, y) in P, and the proof is finished.

So we have proved the following:
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Theorem 2. Denote by (+ +) the equation (+) with f=g+ h. Suppose that
g € F is a bounded function with L, integrable on P, h € %, is a bounded function
on Q and (o, )€ Z. Then there exists at least one function z in C(P) satisfying
Equation (+ +) on P, and such that z(x,0) = o(x) for 0<x<a and z(0, y)
= 1(y) for 0<y<b.

6. Remarks about continuous dependence

The solution of (x) depends on the functions f, ¢ and t. This solution is an
operator (multivalued, in general) defined on the space of points (f, g, 7). In this
section we give some sufficient conditions for this operator to be continuous. We
leave the details to the reader.

Let us denote:

by S(f, 0, T) — the set of all continuous solutions of Equation (%) with f in %,
and (o, 1) in &,

by ¥ — the class of all operators F(-, (f, o, 7)) that f, (o, ) ranges over %, and
Z, respectively.

We shall deal with the set ¥ as the £*-space endowed with the continuous
convergence [11, p. 93], i. e.,

lim F(-, (fx, On, 7)) =F(-, (fo, G0, T0))

n—c

meaning
im ||F(za, (fa; 0ns 7)) = F(zo, (fo, 00, 70))|| = 0
for any sequence (z.) in C(P) that ||z. — zo||— 0 as n — . Moreover, to be precise,
we define the function D in the family of non-empty bounded subsets of C(P) by:
D(U, V)=sup {o(u, V): ue U},

where o(u, V) =inf {||lu —v||: ve V}.
Let A be a closed subset of the space ¥ such that each S(f, o, T) is non-empty
for (f, o, t) with F(-, (f, o, 7)) €. The following theorem holds:

s.uppose that F(’ (.f'l, On, T,.))E%I forn= 1’ 'lll_IE F(, (f"’ Ohn, rﬂ)) = F(a (fo’ 0o,
To)) and, moreover, that Cj S(fx, On, T») is conditionally compact set. Then
n=1

D(S(fa, On, Tn), S(fo, 0o, T0))—0
as n— ». (Hence, for any € >0 there exists a natural number N such that

S(fa, On, tn)={weC(P): inf )||w—z||<£}

z € S(fo, o0, 7o,
for every n>N.)
362



Proof. Let us put &, = (fn, Om, Tm) for m=0, 1, .... Assume the existence of
€ >0 and a subsequence (&) of sequence (&) with D(S(&:), S(&))=¢ fori=1.

Fix an index i. Then there exists a sequence (z¥) of functions in S(&) with o(z{’,
S(E)) + k™' > D(S(&), S(&))=¢ for k=1, 2, .... Since the set S(&) is compact,
(z{") has a convergent subsequence (z{”). We have: o(z{”, S(&))+ 1™ '>¢e for =1,
and ||z{" — z||—0 as [ — . From this it follows that there exists z in S(&) such

that o(z, S(n))=ce.
Proceeding similarly we conclude that the sequence (z,) contains a subsequence
(z)) such that ||z; — zo|| =0 as j— o, and therefore o(zo, S(&0))=¢. Obviously

|zo = F(zo, )l <llzo— z|| + || F(z, &) — F(zo, o)l
for j=1, and }1_9_3 F(z, &) = F(zo, &o). Hence zo€ S(&o), and o(zo, S(Eo) = ¢ with

£ >0. This contradiction completes the proof.

From the above theorem we obtain as a corrolary:

Let the assumptions of the above result be satisfied, let z. € S(fa, 0x, T.) forn=1
and let Equation (x) have exactly one solution z, for f = fo, 0= 00 and T = 1o. Then
|22 — zo|| >0 as n— .
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3AMETKA OB I'MNEPBOJIMYECKUX OVPPEPEHIIUAIIBHBIX
YPABHEHHUAX BTOPOI'O IIOPAOKA (II)

Bonan Xeneuku

Pe3ome

B pa6ore naHbl yCIOBMs CYILECTBOBAHMS U €JHUHCTBEHHOCTH pelueHus 3apauu [JapOy ans runep-
GONIMYECKUX YPAaBHEHHH BTOPOrO MOPAAKA M YCTAHOBEHbIE CBOMNCTBA HENPEPBHIBHOCTH 3TONO PEILEHHS.
Hama 3agaya nocrasineHa KOPPEKTHO B HEKOTOPBIX £*-MPOCTPAHCTBAX MPaBbIX YacTeH H rPaHHYHBIX
ycnosuii. [TonyyeHHble pe3ysbTaThl CBA3aHbI ¢ MeTOAOM Belenkoro o H3MeHEHHH HOPMbI B TEOPHH
nuddepeHINANbHBIX YPaBHEHHH M SBIAIOTCA HMTOrOM NPUMEHEHMA KOHLEMUMOOGOOLIEHHOrO MeT-
PMYECKOI0 MPOCTPAaHCTBa (paccTOsHHE He OO6A3aTENBHO AOMXKHO ObITh KOHEYHHEM) M TEOpeEM
O HEMOABHXXHOM TOYKE.
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