[2] Bandeen-Roche K. J., Liang K. Y.:
Modeling failure-time associations in data with multiple levels of clustering. Biometrika 83 (1996), 29–39
DOI 10.1093/biomet/83.1.29 |
MR 1399153
[6] Charpentier A., Segers J.: Tails of Archimedean copulas. Submitted
[10] Cooper R.:
The converse of the Cauchy–Holder inequality and the solutions of the inequality $g(x + y) \le g(x) + g(y)$. Proc. London Math. Soc. 2 (1927), 415–432
MR 1576944
[12] Durante F., Foschi, F., Spizzichino F.:
Threshold copulas and positive dependence. Statist. Probab. Lett., to appear
MR 2474379 |
Zbl 1148.62032
[13] Feller W.:
An Introduction to Probability Theory and Its Applications. Volume 2. Wiley, New York 1971
MR 0270403 |
Zbl 0598.60003
[15] Genest C.:
The joy of copulas: bivariate distributions with uniform marginals. Amer. Statist. 40 (1086), 4, 280–283
MR 0866908
[16] Genest C., MacKay R. J.:
Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données. La revue canadienne de statistique 14 (1986), 145–159
MR 0849869 |
Zbl 0605.62049
[20] Junker M., Szimayer, S., Wagner N.:
Nonlinear term structure dependence: Copula functions, empirics, and risk implications. J. Banking & Finance 30 (2006), 1171–1199
DOI 10.1016/j.jbankfin.2005.05.014
[23] Klement E. P., Mesiar, R., Pap E.:
Transformations of copulas. Kybernetika 41 (2005), 425–434
MR 2180355
[25] Ling C. M.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212
MR 0190575
[26] McNeil A. J., Neslehova J.: Multivariate Archimedean copulas, D-monotone functions and L1-norm symmetric distributions. Ann. Statist. To appear
[31] Sklar A.:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. de l’Institut de Statistique de l’Université de Paris 8 (1959), 229–231
MR 0125600
[32] Wang S., Nelsen, R., Valdez E. A.: Distortion of multivariate distributions: adjustment for uncertainty in aggregating risks. Mimeo 2005