
Kybernetika

Arthur Charpentier
Dynamic dependence ordering for Archimedean copulas and distorted copulas

Kybernetika, Vol. 44 (2008), No. 6, 777--794

Persistent URL: http://dml.cz/dmlcz/135890

Terms of use:
© Institute of Information Theory and Automation AS CR, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/135890
http://project.dml.cz
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DYNAMIC DEPENDENCE ORDERING
FOR ARCHIMEDEAN COPULAS
AND DISTORTED COPULAS

Arthur Charpentier

This paper proposes a general framework to compare the strength of the dependence
in survival models, as time changes, i. e. given remaining lifetimes X , to compare the
dependence of X given X > t, and X given X > s, where s > t. More precisely, analytical
results will be obtained in the case the survival copula of X is either Archimedean or a
distorted copula. The case of a frailty based model will also be discussed in details.
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1. INTRODUCTION

In the context of insurance (and reinsurance) of large claims, [14] pointed out that
“in case of heavy tailed random variables, apart from the fact that the coefficient
of correlation may not be defined, its main disadvantage is that it does not capture
very well possible dependence in the tails”. In finance and yield curve modeling,
[20] observed that “dependence in the center of the distribution may be treated sepa-
rately from the dependence in the distribution tails”, and that symmetric as well as
asymmetric tail dependence should be considered.

Hence, the mathematical formulation is that risk managers need to assess whether
random vector X given X > x1 is more or less dependent than X given X > x2,
when x1 > x2. This problem can easily be related to the comparison of survival
models: is X given X > t1 is more or less dependent than X given X > t2, when
t1 > t2, i. e. do we have more or less dependence as time elapses ?

1.1. Copulas, Archimedean copulas, and distorted copulas

Definition 1.1. A d-dimensional copula is a d-dimensional distribution function
restricted to [0, 1]d with standard uniform margins, for a non-negative integer d ≥ 2.

For example, the function C⊥(u1, . . . , ud) = u1 × . . . × ud is a copula, called
independent or product copula. C is a copula of the random vector X if

Pr(X1 ≤ x1, . . . , Xd ≤ xd) = C(Pr(X1 ≤ x1), . . . , Pr(Xd ≤ xd)).
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The existence of a copula C such that this equality holds is insured by Sklar’s
theorem (see [31] or [28]). Further, C? is called a survival copula of random vector
X if

Pr(X1 > x1, . . . , Xd > xd) = C?(Pr(X1 > x1), . . . , Pr(Xd > xd)).

Remark 1.1. From this definition, we see that we can conveniently study exceed-
ing properties (X > x) using the survival copula of X, C?, and that for bounding
properties (X ≤ x), the use of C will be more convenient. Hence, for convenience
in the first part of this paper we will derive properties on X given X ≤ x assum-
ing that C satisfies some properties (e. g. Archimedean). Then in order to derive
properties on X given X > t (residual lifetimes), some properties on C? will be
assumed.

Note that a random vector X has independent components if and only if C⊥ is
a copula of X (or equivalently a survival copula).

Definition 1.2. Let φ denote a decreasing function (0, 1] → [0,∞] such that φ(1) =
0, and such that φ−1 is d-monotone, i. e. for all k = 0, 1, . . . , d, (−1)k[φ−1](k)(t) ≥ 0
for all t. Define the inverse (or quasi-inverse if φ(0) < ∞) as

φ−1(t) =

{
φ−1(t) for 0 ≤ t ≤ φ(0)

0 for φ(0) < t < ∞.

The function

C(u1, . . . , un) = φ−1(φ(u1) + · · ·+ φ(ud)), u1, . . . , un ∈ [0, 1],

is a copula, called an Archimedean copula, with generator φ.

The proof that those conditions are necessary and sufficient to define a proper cop-
ula in dimension d can be found in [6] or [26]. Let Φd denote the set of Archimedean
generators in dimension d. Note that φ and c · φ (where c is a positive constant)
yield the same copula, and conversely, two Archimedean copulas are equal if their
generators are equal up to a multiplicative constant. If φ(t) → ∞ when t → 0, the
generator will be said to be strict.

Example 1.1. The independent copula C⊥ is an Archimedean copula, with gener-
ator φ(t) = − log t. The upper Fréchet–Hoeffding copula, defined as the minimum
componentwise, M(u) = min{u1, . . . , ud}, is not Archimedean (but can be obtained
as the limit of some Archimedean copulas).

Example 1.2. A large subclass of Archimedean copula in dimension d is the class
of Archimedean copulas obtained using the frailty approach. Those copulas are
obtained when φ is the inverse of the Laplace transform of a positive random vari-
able (i. e. a completely monotone function taking value 1 in 0). Consider random
variables X1, . . . , Xd conditionally independent, given a latent factor Θ, a positive
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random variable, such that Pr (Xi ≤ xi|Θ) = Gi (x)Θ where Gi denotes a baseline
distribution function. The joint distribution function of X is given by

FX (x1, . . . , xd) = E (Pr (X1 ≤ x1, . . . , Xd ≤ Xd|Θ))

= E

(
d∏

i=1

Pr (Xi ≤ xi|Θ)

)
= E

(
d∏

i=1

Gi (xi)
Θ

)

= E

(
d∏

i=1

exp [−Θ(− log Gi (xi))]

)
= ψ

(
−

d∑

i=1

log Gi (xi)

)
,

where ψ is the Laplace transform of the distribution of Θ, i. e. ψ (t) = E (exp (−tΘ)) .
Because the marginal distributions are given respectively by

Fi(xi) = Pr(Xi ≤ xi) = ψ (− log Gi (xi)) ,

the copula of X is

C (u) = FX

(
F1
−1 (u1) , . . . , Fd

−1 (ud)
)

= ψ
(
ψ−1 (u) + · · ·+ ψ−1 (ud)

)

This copula is an Archimedean copula with generator φ = ψ−1 (see e. g. [7, 29, 33],
or [2] for more details).

[17] extended the concept of Archimedean copulas introducing the multivariate
probability integral transformation ([32] called this the distorted copula, while [23] or
[11] called this the transformed copula). Consider a copula C. Let h be a continuous
strictly concave increasing function [0, 1] → [0, 1] satisfying h (0) = 0 and h (1) = 1,
such that

Dh (C) (u1, . . . , ud) = h−1 (C (h (u1) , . . . , h (ud))) , 0 ≤ ui ≤ 1

is a copula. Those functions will be called distortion functions.

Example 1.3. A classical example is obtained when h is a power function, and
when the power is the inverse of an integer, hn(x) = x1/n, i. e.

Dhn (C) (u, v) = Cn(u1/n, v1/n), 0 ≤ u, v ≤ 1 and n ∈ N.

Then this copula is the survival copula of the componentwise maxima: the copula
of (max{X1, . . . , Xn}, max{Y1, . . . , Yn}) is Dhn(C), where {(X1, Y1), . . . , (Xn, Yn)}
is an i.i.d. sample, and the (Xi, Yi)’s have copula C.

Example 1.4. Let φ denote a convex decreasing function on (0, 1] such that φ(1)=0,
and define C(u, v) = φ−1(φ(u) + φ(v)) = Dexp[−φ](C⊥). This function is a copula,
called Archimedean copula (see [25] and [15]), and function φ is a generator of that
copula.

In the bivariate case (Examples 1.3 and 1.4), h need not be differentiable, and
concavity is a sufficient condition. Unfortunately, in higher dimension, it is much
difficult to characterize the set of distortion function which might generate a copula.
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Let Hd denote the set of continuous strictly increasing functions [0, 1] → [0, 1] such
that h (0) = 0 and h (1) = 1, for all h ∈ Hd and C ∈ C,

Dh (C) (u1, . . . , ud) = h−1 (C (h (u1) , . . . , h (ud))) , 0 ≤ ui ≤ 1

is a copula, called distorted copula. Hd-copulas will be functions Dh (C) for some
distortion function h and some copula C. The d-monotonicity of function Dh (C)
(in order to define a proper copula function) is obtained when h ∈ Hd, i. e. h is
continuous, with h (0) = 0 and h (1) = 1, and such that h(k)(x) ≤ 0 for all x ∈ (0, 1)
and k = 2, 3, . . . , d (from Theorem 2.6 and 4.4 in [27]).

As a corollary, note that if φ ∈ Φd, then h(x) = exp(−φ(x)) belongs to Hd.
Further, observe that for h, h′ ∈ Hd,

Dh◦h′ (C) (u1, . . . , ud) = (Dh ◦ Dh′) (C) (u1, . . . , ud) , 0 ≤ ui ≤ 1.

1.2. Outline of the paper

The goal of this paper is to answer the question mentioned above: is X given X > x1

more or less dependent than X given X > x2, in the case the surival copula of X
is Archimedean. Hence, Section 2 will study properties of X given X ≤ x, when
the copula of X is Archimedean, and give details in the case X admits a frailty
representation. In Section 3, analogous properties will be derived in the case the
survival copula of X is a distorted copula, and we will extend the frailty model
to that case. And finally, in the case of Archimedean copulas, a characterization
of Archimedean copulas which are more and more dependent (in tails, or as time
elapses in aging models) will be given in Section 4.

2. RIGHT CENSORING OF ARCHIMEDEAN COPULAS

Let C be a copula and let U be a random vector with joint distribution function C.
Let u ∈ (0, 1]d be such that C(u) > 0. The lower tail dependence copula of C at level
u is defined as the copula, denoted Cu, of the joint distribution of U conditionally
on the event {U ≤ u} = {U1 ≤ u1, . . . , Ud ≤ ud}. Formally,

Cu(x1, . . . , xd) =
C(x′1, . . . , x

′
d)

C(u)

where 0 ≤ x′i ≤ ui are the solutions to the equations

C(u1, . . . , ui−1, x
′
i, ui+1, . . . , ud)

C(u)
= xi,

(see Definition 3.1 in [21] or Definition 2.2 in [22] when u = u · 1, or [12] and
Definition 2.5 in [3] in a more general context).

If C is a strict Archimedean copula with generator φ (i. e. φ(0) = ∞), then
the lower tail dependence copula relative to C at level u is given by the strict
Archimedean copula with generator φu defined by

φu(t) = φ(t · C(u))− φ(C(u)), 0 ≤ t ≤ 1, (1)
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where C(u) = φ−1[φ(u1) + · · · + φ(ud)] (Proposition 3.2 in [21]). Note that tail
properties of Archimedean copulas, based on this conditional copulas, have recently
been intensively studied (see e. g. [4] and [5])

Example 2.1. Gumbel copulas have generator φ (t) = [− ln t]θ where θ ≥ 1. For
any u ∈ (0, 1]d, the corresponding conditional copula has generator

φu (t) =
[
M1/θ − ln t

]θ

−M where

M = [− lnu1]
θ + · · ·+ [− lnud]

θ
.

Example 2.2. Clayton copulas C have generator φ (t) = t−θ − 1 where θ > 0.
Hence,

φu (t) = [t · C(u)]−θ − 1− φ(C(u))
= t−θ · C(u)−θ − 1− [C(u)−θ − 1] = C(u)−θ · [t−θ − 1],

hence φu (t) = C(u)−θ · φ(t). Since the generator of an Archimedean copula is
unique up to a multiplicative constant, φu is also the generator of Clayton copula,
with parameter θ.

Note that this stability of the class can be obtained in the subclass of Archimedean
copulas with a factor representation, obtained using the frailty approach.

Example 2.3. Gumbel copulas could be obtained when factor Θ has a stable distri-
bution, i. e. its Laplace transform equal to ψ (t) = exp

[
−t1/θ

]
. Furthermore, Clay-

ton copulas are obtained when the heterogeneity factor Θ has a Laplace transform
equal to ψ (t) = [1− t]−1/θ. The heterogeneity distribution is a Gamma distribution
with degrees of freedom 1/θ.

Theorem 2.4. Consider X with Archimedean copula, having a factor representa-
tion, and let ψ denote the Laplace transform of the heterogeneity factor Θ. Let
u ∈ (0, 1]d, then X given X ≤ FX

−1(u) (in the pointwise sense, i. e. X1 ≤
F1
−1(u1), . . . ., Xd ≤ Fd

−1(ud)) is an Archimedean copula with a factor represen-
tation, where the factor has Laplace transform

ψu (t) =
ψ

(
t + ψ−1 (C(u))

)

C(u)
.

P r o o f . Note that X given X ≤ FX
−1(u) will be said to have an Archimedean

copula with a factor representation if all the components are independent, given a
positive factor Θ′, and if marginal distribution functions can be written as G′

i(xi)Θ
′
.

Consider a random vector Y such that Y
L= X|X ≤ FX

−1(u). The joint distri-
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bution function of Y , denoted F ′, is

F ′(x) = Pr(Y ≤ x) = Pr(X ≤ x|X ≤ FX
−1(u))

=
Pr(X ≤ x)

Pr(X ≤ FX
−1(u))

on (−∞, FX
−1(u)],

=
ψ(ψ−1(F1(x1)) + . . . ψ−1(Fd(xd)))

C(u)

=
ψ(− log G1(x1)− . . . .− log Gd(xd))

C(u)
,

since Fi(xi) = ψ(− log Gi(xi)). Hence, from this relationship one gets that the
marginal distribution of Y is

F ′
i (xi) = lim

xj→Fj
−1(uj),j 6=i

F (x)

=
ψ(− log(Gi(xi))) + ψ−1(u1) + . . . + ψ−1(ui−1) + ψ−1(ui+1) + . . . + ψ−1(ud)

C(u)

=
ψ

(
[− log(Gi(xi)))− ψ−1(ui)] + ψ−1 (u1) + . . . + ψ−1 (ud)

)

ψ (ψ−1 (u1) + . . . + ψ−1 (ud))
.

Recall (see [13]) that if ψ is the Laplace transform of random variable Z, so that
ψ (t) = E (exp (−tZ)), where Z has distribution function FZ , then φ defined as
φ (t) = ψ (t + c) /ψ (c) is the Laplace transform of some random variable Z ′ with
cumulative distribution function FZ′ (t) = exp (−ct) FZ (t).

Hence, the marginal distribution function of Yi can be written

F ′
i (xi) = ψu([− log(Gi(xi))− ψ−1(ui)]),

where ψu is the Laplace transform defined as

ψu(t) =
ψ

(
t + ψ−1 (u1) + . . . + ψ−1 (ud)

)

ψ (ψ−1 (u1) + . . . + ψ−1 (ud))
=

ψ(t + ψ−1(C(u)))
C(u)

.

Set further G′
i(xi) = exp (log(Gi(xi)) + ψ(ui)) on (−∞, Fi

−1(ui)]. One gets easily
that G′

i is an increasing function, with G′
i(xi) → 0 as xi → −∞ and G′

i(Fi
−1(ui)) =

exp(0) = 1. Hence, G′
i is a cumulative distribution function.

As at now, we have that there exists a random variable Θ′ with Laplace transform
ψu, such that Pr(Yi ≤ xi|Θ′) = Gi(xi)Θ

′
for all i ∈ {1, . . . , d}. Let us prove that

given Θ′, the components of Y are independent.
On the one hand, we have obtained that the joint distribution function of Y is

F ′(x) =
ψ(− log G1(x1)− . . . .− log Gd(xd))

C(u)
.

From the expression of ψ′, note that this expression becomes

F ′(x) = ψu(− log G1(x1)− . . . .− log Gd(xd)− ψ−1(u1)− . . .− ψ−1(ud)).
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On the other hand,

E (Pr (Y1 ≤ x1|Θ′) · . . . · Pr (Yd ≤ xd|Θ′))
= E

(
G′

1(x1)Θ
′ · . . . ·G′

d(xd)Θ
′
)

= E(exp[−Θ′(− log G′
1(x1))] · . . . · exp[−Θ′(− log G′

d(xd))])
= E

(
exp[−Θ′(−[log G1(x1)+ψ−1(u1)])] · . . . · exp[−Θ′(−[log Gd(xd)+ψ−1(ud)])]

)

= ψu

(
− log(G1(x1))− ψ−1(u1)− . . .− log(Gd(xd))− ψ−1(ud)

)
,

and therefore, one gets that

E (Pr (Y1 ≤ x1|Θ′) · . . . · Pr (Yd ≤ xd|Θ′)) = F ′(x)
= E (Pr (Y1 ≤ x1, . . . , Yd ≤ xd|Θ′)) ,

i. e. given Θ′, the components of Y are independent.
In order to conclude, let us just observe that Θ′ is a positive random variable,

since
Pr(Θ′ < 0) = lim

t→∞
ψu(t) = lim

t→∞
ψ(t) = 0,

since Θ is a positive variable. Finally, the conditional vector X given X ≤ FX
−1(u)

will be said to have an Archimedean copula with a factor representation. This
finishes the proof of Theorem 2.4. ¤

Example 2.5. If Θ has a Gamma distribution, with shape parameter κ > 0 and
scale parameter α > 0, then its Laplace transform is (1− α t)−κ for t < 1/α. Thus,

ψu (t) =
ψ

(
t + ψ−1 (C(u))

)

C(u)
=

(1− α(t− [C(u)κ − 1]/α))−κ

C(u)

=
(C(u)κ − αt)−κ

C(u)
=

(
1− [αC(u)−κ]t

)−κ

which is still a Gamma distribution with the same shape parameter κ.

3. H-COPULAS AND LATENT FACTOR MODELS

We have introduced earlier the class of Hd-copulas, defined as

Dh(C)(u1, . . . , ud) = h−1(C(h(u1), . . . , h(ud))), 0 ≤ ui ≤ 1,

where C is a copula, and h ∈ Hd is a d-distortion function. As noticed earlier,
copulas Dh(C⊥) are Archimedean copulas. An idea can be to focus on the factor
interpretation of Archimedean copulas, and to extend it in the non-independent case.

Assume that there exists a positive random variable Θ, such that, conditionally
on Θ, random vector X = (X1, . . . , Xd) has copula C, which does not depend on Θ.
Assume moreover that C is in extreme value copula, or max-stable copula (see e. g.
[19]): C

(
xh

1 , . . . , xh
d

)
= Ch (x1, . . . , xd) for all h ≥ 0. The following result holds,
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Lemma 3.1. Let Θ be a random variable with Laplace transform ψ, and consider
a random vector X = (X1, . . . , Xd) such that X given Θ has copula C, an extreme
value copula. Assume that, for all i = 1, . . . , d, Pr (Xi ≤ xi|Θ) = Gi (xi)

Θ where the
Gi’s are distribution functions. Then X has copula

CX (x1, . . . , xd) = ψ
(
− log

(
C

(
exp

[
−ψ−1 (x1)

]
, . . . , exp

[
−ψ−1 (xd)

])))
,

whose copula is of the form Dh(C) with h(·) = exp
[
−ψ−1 (·)

]
.

P r o o f . Let X be a random vector such that X given Θ has copula C and
Pr (Xi ≤ xi|Θ) = Gi (xi)

Θ, i = 1, . . . , d. Then, the (unconditional) joint distri-
bution function of X is given by

F (x) = E (Pr (X1 ≤ x1, . . . , Xd≤xd|Θ)) = E (C (Pr (X1≤xi|Θ) , . . . , Pr (Xd≤xd|Θ)))

= E
(
C

(
G1 (x1)

Θ
, . . . , Gd (xd)

Θ
))

= E
(
CΘ (G1 (x1) , . . . , Gd (xd))

)

= ψ (− log C (G1 (x1) , . . . , Gd (xd))) ,

where ψ is the Laplace transform of the distribution of Θ, i. e. ψ (t) = E (exp (−tΘ)).
Because C is an extreme value copula,

C
(
G1 (x1)

Θ
, . . . , Gd (xd)

Θ
)

= CΘ (G1 (x1) , . . . , Gd (xd)) .

One gets finally that the unconditional marginal distribution functions are Fi (xi)
= ψ (− log Gi (xi)), and therefore

CX (x1, . . . , xd) = ψ
(
− log

(
C

(
exp

[
−ψ−1 (x)

]
, exp

[
−ψ−1 (y)

])))
.

Note that since ψ−1 is completely monotone, then h belongs to Hd. This finishes
the proof of Lemma 3.1. ¤

We will see with the Theorem below that, in the case where the copula of X
is an Hd-copula, the stability of exchangeable Archimedean copulas with a factor
representation can be extended to Hd-copula, with additional assumptions.

Theorem 3.2. Let X be a random vector with an Hd-copula with a factor rep-
resentation, let ψ denote the Laplace transform of the heterogeneity factor Θ, C
denote the underlying copula, and Gi’s the marginal distributions.

(1) Let u ∈ (0, 1]d, then, the copula of X given X ≤ FX
−1 (u) is

CX,u (x) = ψu

(
−log

(
Cu

(
exp

[
−ψu

−1 (x1)
]
, . . . , exp

[
−ψu

−1 (xd)
])))

= Dhu(Cu)(x),

where hu(·) = exp
[
−ψu

−1 (·)
]
, and where

• ψu is the Laplace transform defined as ψu (t) = ψ (t + α) /ψ (α) where α =
− log (C (u∗)), u∗i = exp

[
−ψ−1 (ui)

]
for all i = 1, . . . , d. Hence, ψu is the

Laplace transform of Θ given X ≤ FX
−1 (u),
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• Pr
(
Xi ≤ xi|X ≤ FX

−1 (u) , Θ
)

= G′
i (xi)

Θ for all i = 1, . . . , d, where

G′
i (xi) =

C (u∗1, u
∗
2, . . . , Gi (xi) , . . . , u∗d)

C (u∗1, u
∗
2, . . . , u

∗
i , . . . , u

∗
d)

,

• and Cu is the following copula

Cu (x) =
C

(
G1

(
G′

1
−1 (x1)

)
, . . . , Gd

(
G′

d
−1 (xd)

))

C (G1 (F1
−1 (u1)) , . . . , Gd (Fd

−1 (ud)))
.

(2) Furthermore, the copula of X given X ≤ FX
−1 (u) is an Hd-copula with a

factor representation if and only if Cu is an extreme value copula.

P r o o f . (1) Let CX be the copula of X, that is

CX (u1, . . . , ud) = ψ
(
− log

(
C

(
exp

[
−ψ−1 (u1)

]
, . . . , exp

[
−ψ−1 (ud)

])))
.

(i) The marginal distribution of Xi given X ≤ FX
−1 (u), and given Θ = θ is

Pr
`
Xi ≤ xi|X ≤ FX

−1 (u) , Θ = θ
´

=
Pr
`
X1 ≤ F1

−1(u1), . . . , Xi ≤ xi, Xi+1 ≤ F1
−1(ui+1), . . . , Xd ≤ Fd

−1(ud)|Θ = θ
´

Pr (X1 ≤ F1
−1(u1), . . . , Xi ≤ Fi

−1(ui), Xi+1 ≤ F1
−1(ui+1), . . . , Xd ≤ Fd

−1(ud)|Θ = θ)

=
C
`
Pr
`
X1 ≤ F1

−1(u1)|Θ = θ
´
, . . . , Pr (Xi ≤ xi|Θ = θ) , . . . , Pr

`
Xd ≤ Fd

−1(ud)|Θ = θ
´´

C (Pr (X1 ≤ F1
−1(u1)|Θ = θ) , . . . , Pr (Xi ≤ Fi

−1(ui)|Θ = θ) , . . . , Pr (Xd ≤ Fd
−1(ud)|Θ = θ))

since C is the copula of X given Θ, i. e.

Pr (X1 ≤ x1, . . . , Xd ≤ xd|Θ = θ) = C (Pr (X1 ≤ x1|Θ = θ) , . . . , Pr (Xd ≤ xd) |Θ = θ) .

Hence,

Pr
(
Xi ≤ xi|X ≤ FX

−1 (u) , Θ = θ
)

=
C(G1(F1

−1(u1))θ, . . . , Gi(xi)θ, . . . , Gd(Fd
−1(ud))θ)

C(G1(F1
−1(u1))θ, . . . , Gi(Fi

−1(ui))θ, . . . , Gd(Fd
−1(ud))θ)

because C is an extreme value copula. Since Fj (xj) = ψ (− log Gj (xj)), set u∗j =
Gj

(
Fj
−1 (uj)

)
= exp

[
−ψ−1 (uj)

]
for all j = 1, . . . , d. The marginal distribution

satisfies

Pr
(
Xi ≤ xi|X ≤ FX

−1 (u) , Θ = θ
)

=
(

C(u∗1, . . . , u
∗
i−1, Gi(xi), u∗i+1, . . . , u

∗
d)

C(u∗1, . . . , u
∗
i−1, u

∗
i , u

∗
i+1, . . . , u

∗
d)

)θ

.

One can get easily that

G∗
i (xi) =

C(u∗1, . . . , u
∗
i−1, Gi(xi), u∗i+1, . . . , u

∗
d)

C(u∗1, . . . , u
∗
i−1, u

∗
i , u

∗
i+1, . . . , u

∗
d)
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is (univariate) distribution function, since C and Gi are both increasing, and more-
over G∗

i

(
Fi
−1 (ui)

)
= u∗i .

(ii) The joint distribution function of X given X ≤ FX
−1 (u) is

Pr
(
X ≤ x|X ≤ FX

−1(u)
)

=
Pr (X ≤ x)

Pr (X ≤ FX
−1 (u))

=
E (Pr (X ≤ x|Θ))

C(u)

=
E

(
C

(
G1(x1)Θ, . . . , Gd(xd)Θ

))

C(u)

=
E (C (G1(x1), . . . , Gd(xd)))

Θ

C(u)

From the expression of copula CX ,

CX (u) = ψ
(
− log

(
C

(
exp

[
−ψ−1 (u1)

]
, . . . , exp

[
−ψ−1 (ud)

])))

= ψ (− log (C (u∗1, . . . , u
∗
d))) ,

one gets

Pr
(
X ≤ x|X ≤ FX

−1(u)
)

=
ψ(− log C(G1(x1), . . . , Gd(xd)))

ψ(− log C(u∗1, . . . , u
∗
d))

=
ψ[− log C(u∗1, . . . , u

∗
d)− α] + α

ψ(α)

where α = − log (C (u∗1, . . . , u
∗
d)). Set ψu (t) = ψ (t + α) /ψ (α). From this expres-

sion, ψu is also a Laplace transform. Furthermore, the expression above could be
written

Pr
(
X ≤ x|X ≤ FX

−1(u)
)

= ψu

(
− log

C (G1 (x1) , . . . , Gd (xd))
C (u∗1, . . . , u

∗
d)

)
.

We can then write the conditional marginal distribution function as

Pr
(
Xi ≤ xi|X ≤ FX

−1(u)
)

= ψu

(
− log

C (u∗1, . . . , Gi(xi), . . . , u∗d)
C (u∗1, . . . , u

∗
d)

)

= ψu(− log G∗
i (xi)),

i. e.,
Pr

(
Xi ≤ xi|X ≤ FX

−1(u)
)

= E
(
G∗

i (xi)Θ
)
,

where Θ has Laplace transform ψu.

(iii) Note that hu(·) = exp
[
−ψu

−1 (·)
]

also belongs to Hd since ψu is completely
monotone.

(iv) Let Cu be the functional defined on [0, 1]d by

Cu (x1, . . . , xd) =
C

(
G1

(
G∗

1
−1 (x1)

)
, . . . , Gd

(
G∗

d
−1 (xd)

))

C (G1 (F1
−1 (u1)) , . . . , Gd (Fd

−1 (ud)))
.
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Because C is d-increasing (C is a copula) and the Gi’s are increasing, Cu is d-
increasing. Furthermore,

Cu (x1, . . . , xi−1, 0, xi+1, . . . , xd)

=
C

(
G1

(
G∗

1
−1 (x0)

)
, . . . , Gi

(
G∗

i
−1 (0)

))
, . . . , Gd

(
G∗

d
−1 (xd)

)

C (G1 (F1
−1 (u1)) , . . . , Gd (Fd

−1 (ud)))
= 0,

and

Cu (1, . . . , 1, xi, 1, . . . , 1)

=
C

(
G1

(
G∗

1
−1 (1)

)
, . . . , Gi

(
G∗

i
−1 (xi)

)
, . . . , Gd

(
G∗

d
−1 (1)

))

C (G1 (F1
−1 (u1)) , . . . , Gd (Fd

−1 (ud)))

=
C

(
u∗1, . . . , u

∗
i−1, Gi

(
G∗

i
−1 (xi)

)
, u∗i+1, . . . , u

∗
d

)

C (G1 (F1
−1 (u1)) , . . . , Gd (Fd

−1 (ud)))
.

Thus, Cu (1, . . . , 1, G∗
i (xi) , 1, . . . , 1) = G∗

i (xi), that is, since G∗
i is bijective on [0, 1],

for all zi in [0, 1], Cu (1, . . . , 1, zi, 1, . . . , 1) = zi. So, finally, Cu is a copula.
(v) Using the results obtained above, one gets that the copula of X given X ≤

FX
−1(u) is CX,u defined as

CX,u(x1, . . . , xd)
= ψu

(
− log

(
Cu

(
exp

[
−ψ−1

u (x1)
]
, exp

[
−ψu

−1 (xd)
])))

= Dhu(Cu)(x1, . . . , xd).

which is the analogous of the result of Proposition (3.1).

(2) Assume that X = (X1, . . . , Xd) has an Hd-copula. Using the notions of the
beginning of the prof, let Cu denote the copula of X given X ≤ FX

−1 (u)) and
given Θ. Then, for all θ ≥ 0

Cu (x)θ =
C

(
G1

(
G∗

1
−1 (x1)

)
, . . . , Gd

(
G∗

d
−1 (xd)

))θ

C (G1 (F1
−1 (u1)) , . . . , Gd (Fd

−1 (ud)))
θ

=
C

(
G1

(
G∗

1
−1 (x1)

)θ
, . . . , Gd

(
G∗

d
−1 (xd)

)θ
)

C
(
G1 (F1

−1 (u1))
θ
, . . . , Gd (Fd

−1 (ud))
θ
)

=
C

(
Pr

(
X1 ≤ G∗

1
−1 (x1) |Θ = θ

)
, . . . , Pr

(
Xd ≤ G∗

d
−1 (xd) |Θ = θ

))

C (Pr (X1 ≤ F1
−1 (u1) |Θ = θ) , . . . , Pr (Xd ≤ Fd

−1 (ud) |Θ = θ))

=
Pr

(
X1 ≤ G∗

1
−1 (x1) , . . . , Xd ≤ G∗

d
−1 (xd) |Θ = θ

)

C (u∗1, . . . , u
∗
d)

.

Note that the numerator could be written

Pr
(
X ≤ G∗−1 (x) |Θ = θ

)

= Pr
(
X ≤ G∗−1 (x) |X ≤ F−1 (u) ,Θ = θ

)
· Pr

(
X ≤ F−1 (u) |Θ = θ

)

= Pr
(
X ≤ G∗−1 (x) |X ≤ F−1 (u) ,Θ = θ

)
· C(u∗),
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and therefore

Cu (x)θ = Pr
(
X ≤ G∗−1 (x) |X ≤ F−1 (u) , Θ = θ

)
.

From this expression, using the fact that Cu is the copula of X ≤ G∗−1 (x) and
X ≤ F−1 (u) and Θ = θ, we get

Pr
(
X ≤ G∗−1 (x) |X ≤ F−1 (u) , Θ = θ

)

= Cu

(
Pr

(
X1≤G∗

1
−1 (x1) |X≤F−1 (u) ,Θ=θ

)
, . . .

. . . , Pr
(
Xd≤G∗

d
−1 (xd) |X≤F−1 (u) , Θ=θ

))

= Cu

(
Pr

(
X1≤G∗−1

1 (x1) |X≤F−1 (u)
)θ

, . . . , Pr
(
Xd≤G∗

d
−1 (xd) |X≤F−1 (u)

)θ
)

= Cu(xθ
1, . . . , x

θ
d).

Hence, for all θ ≥ 0, Cu(x)θ = Cu(xθ) and therefore, Cu is an extreme value copula.
Conversely, assume that Cu is an extreme value copula. The conditional joint

distribution of X given X ≤ F−1 (u), and Θ = θ is

Pr
(
X ≤ x|X ≤ F−1 (u) , Θ = θ

)
(2)

=
Pr (X ≤ x|Θθ)

Pr (X ≤ F−1 (u) , Θ = θ)

=
C (Pr (X1 ≤ x1|Θ = θ) , . . . , Pr (Xd ≤ xd|Θ = θ))

C (Pr (X1 ≤ F1
−1 (u1) |Θ = θ) , . . . , Pr (Xd ≤ Fd

−1 (ud) |Θ = θ))

=
C

(
G1 (x1)

θ
, . . . , Gd (xd)

θ
)

C
(
G1 (F1

−1 (u1))
θ
, . . . , Gd (Fd

−1 (ud))
θ
)

=
[

C (G1 (x1) , . . . , Gd (xd))
C (G1 (F1

−1 (u1)) , . . . , Gd (Fd
−1 (ud)))

]θ

= Cu (G∗
1 (x1) , . . . , G∗

d (xd))
θ = C∗

(
G∗

1 (x1)
θ
, . . . , G∗

d (xd)
θ
)

(3)

= Cu

(
Pr(X1≤x1|X≤F−1(u), Θ=θ), . . . , Pr(Xd≤xd|X≤F−1(u), Θ=θ)

)
,(4)

because Cu is an extreme value copula. So finally, Cu is the copula of X given
X ≤ FX

−1 (u)) and given Θ. This finishes the proof of Theorem 3.2. ¤

4. COMPARING TAILS OF ARCHIMEDEAN COPULAS

This idea of comparing dependence structure as time elapses can be found in [8].
Here, a characterization based on the Archimedean generator is given.

From Theorem 3.2, one can notice that the generator of the conditional copula is
the same on a given level curve of the copula C : if C (u1) = C (u2), then Cu1 = Cu2 .
Since C is continuous, for all u ∈ (0, 1]d, there is t ∈ (0, 1] such that C (u) = C(t ·1).
Hence, for convenience, instead of comparing Cu1 = Cu2 , we simply have to compare
Ct1 and Ct2 (for appropriate ti’s such that C (ui) = C(ti · 1) ).
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When studying the evolution of the conditional copula on the diagonal, one can
expect a dependence structure which is all the more positively dependent as t de-
creases, or similarly, all the less dependent. In the first case, if 0 < t2 ≤ t1 ≤ 1,
Ct1 ¹ Ct2 , in the sense that Ct1 (u) ≤ Ct2 (u) for all u in (0, 1]d, which is the lower
orthant-ordering (see [24]).

[16] proved a so-called Cooper’s Theorem in dimension 2, stating that if φ1 ◦φ−1
2

is subadditive, then C1(u, v) ≤ C2(u, v) where Ci is the Archimedean copula induced
by φi. Recall that function f is subadditive if and only if f(x+ y) ≤ f(x)+ f(y) for
all x, y. Actually, this result also holds in higher dimension, since f is subadditive
if and only if

f(x1 + . . . + xd) ≤ f(x1) + . . . + f(xd), for all x1, . . . , xd.

A sufficient condition for this result to hold is when φ1/φ2 is increasing (from [9] or
[10]), and no condition on the dimension are necessary here.

Proposition 4.1. Let t1 and t2 such that 0 < t2 ≤ t1 ≤ 1, and let C be an
Archimedean copula with generator φ. Let

f12 (x) = φ

(
C(t1 · 1)
C(t2 · 1)

φ−1 (x + φ (C(t2 · 1)))
)
− φ (C(t1 · 1))

f21 (x) = φ

(
C(t2 · 1)
C(t1 · 1)

φ−1 (x + φ (C(t1 · 1)))
)
− φ (C(t2 · 1)) ,

Then

• Ct2 (u) ≤ Ct1 (u) for all u in [0, 1]d if and only if f21 (x)is sudadditive,

• Ct2 (u) ≥ Ct1 (u) for all u in [0, 1]d if and only if f12 (x)is sudadditive.

P r o o f . As shown in Theorem 3.1 in [16], if C1 and C2 are two Archimedean copulas
with generator φ1 and φ2, then C2 ¹ C1 if and only if φ2 ◦φ1

−1 is subadditive, that
is

φ2 ◦ φ1
−1 (x + y) ≤ φ2 ◦ φ1

−1 (x) + φ2 ◦ φ1
−1 (y) for all x, y ≥ 0

In the case of conditional copulas, φ2 (x) = φ (C(t2 · 1)x)−φ (C(t2 · 1)) and φ1 (x) =
φ (C(t1 · 1)x) − φ (C(t1 · 1)), and so, Ct2 ¹ Ct1 if and only if f21 (x)is sudadditive,
where

f21 (x) = φ

(
C(t2 · 1)
C(t1 · 1)

φ−1 (x + φ (C(t1 · 1)))
)
− φ (C(t2 · 1)) .

One gets analogous results for f12.
This finishes the proof of Proposition 4.1. ¤



790 A. CHARPENTIER

Example 4.2. The case of Clayton copulas could be seen as a limiting case, in the
sense that φ (t) = t−θ − 1 and so, f12 is linear, i. e.

f12 (x) = ax + b where a = C(t1 · 1)θ/C(t2 · 1)θ.

We obtain here the particular case mentioned in Lemma 5.5.8. in [30].

In the case were φ is twice differentiable, a sufficient condition for uniform ordering
of conditional copula is the following.

Proposition 4.3. If φ is twice differentiable, set ψ (x) = log−φ′′ (x),

(i) If ψ is concave on ]0, 1], then Ct1 (u) ≤ Ct2 (u) in [0, 1]d, for all 0 < t2 ≤ t1 ≤ 1.
(ii) Similarly, if ψ (x) is convex on ]0, 1], then Ct2 (u) ≥ Ct1 (u) for all u in [0, 1]d,

for all 0 < t2 ≤ t1 ≤ 1.

P r o o f . (i) Let 0 ≤ t2 ≤ t1 ≤ 1, and β = C(t2 ·1), γ = C(t1 ·1) and α = γ/β, α ≤ 1.
Let f (x) = φ

(
αφ−1 (x + φ (β))

)
− φ (γ), then

f ′ (x) = α
φ′(φ−1(x+φ(β)))

φ′ `αφ−1 (x + φ (β))
´

f ′′ (x) = α
αφ′′(αφ−1(x+φ(β)))·φ′(φ−1(x+φ(β)))−φ′(αφ−1(x+φ(β)))·φ′′(φ−1(x+φ(β)))

φ′(φ−1(x+φ(β)))3

Because φ is a generator of an Archimedean copula, φ is positive, and φ′ is negative.
So, finally, f ′′12 (x) is negative if and only if
αφ′′ `αφ−1 (x + φ (β))

´
· φ′ `φ−1 (x + φ (β))

´
− φ′ `αφ−1 (x + φ (β))

´
· φ′′ `φ−1 (x + φ (β))

´
≥ 0

for all x, that is αφ′′ (αy) · φ′ (y) − φ′ (αy) · φ′′ (y) ≥ 0 for all y, or, dividing by
φ′ (y) · φ′ (αy) ,

αφ′′ (αy)
φ′ (αy)

− φ′′ (y)
φ′ (y)

≥ 0 or
−αφ′′ (αy)
−φ′ (αy)

≥ −φ′′ (y)
−φ′ (y)

for all y, α ≤ 1.

Because αφ′′ (αy) = (φ′ (αy))′ and φ′′ (y) = (φ′ (y))′, let g (t) = D log−Dφ (t) =
Dψ (t), then f ′′12 (x) is negative if and only if g (αy) ≥ g (y) for all y and α ≤ 1,
that is g is decreasing, or ψ is concave. In this case, f is concave, and, furthermore,
f (0) = 0. From Lemma 4.4.3 in Nelsen [28] one gets that f is subadditive.

(ii) Same proof holds: f ′′21 (x) is negative if and only if g (αy) ≥ g (y) for all y
and α ≥ 1, that is g is increasing, or ψ is convex.

This finishes the proof of Proposition 4.3. ¤

Example 4.4. Let C be a Ali–Mikhail–Haq copula (from [1]), with generator
φ (x) = log (1− θ (1− x))− log x. Then

φ′ (x) =
θ

1− θ (1− x)
− 1

x
and ψ (x) = log

(
1
x
− θ

1− θ (1− x)

)
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One gets that

ψ′′ (x) =
−2 (1− θ)

φ′ (x)2

[
3θ2x2 + 3θ (1− θ) x + (1− θ)2

x3 (1− θ (1− x))3

]

which is positive. So finally, ψ is a concave function on [0, 1], and so Ct2 (u) ≤ Ct1 (u)
for all u in [0, 1]d, for all 0 < t2 ≤ t1 ≤ 1: X given Xi ≤ Fi(t) for all i = 1, . . . , d is
less and less positively dependent, as t decreases toward 0.

Example 4.5. Let C be the copula given by (4.2.19) in Nelsen [28], that is with
generator φ (x) = exp (θ/x) − exp (θ). Then, for all t1 and t2 such that 0 < t2 ≤
t1 ≤ 1, and let Ci = θ/ log [2 exp (θ/ti)− exp (θ)] where i = 1, 2. One gets

f12 (x) = exp
(

log [2 exp (θ/t1)−exp (θ)]
log [2 exp (θ/t2)−exp (θ)]

log (x+2 exp (θ/t2)−exp (θ))
)

−2 exp (θ/t1)+exp (θ)

After derivating two times with respect to x, one gets f ′′12 (x) ≥ 0 and f12 (x) is
concave. Hence, because f12 (0) = 0 and f12 (x) is convex, then f12 (x) is subadditive.
Ct2 (u) ≥ Ct1 (u) for all u in [0, 1]d, for all 0 < t2 ≤ t1 ≤ 1: X given Xi ≤ Fi(t) for
all i = 1, . . . , d is more and more positively dependent, as t decreases toward 0.

One can notice that this case is an application of Proposition 4.3:

ψ (x) = log−φ′ (t) =
θ

x
+ log θ − 2 log x

is a convex function on [0, 1], and so Ct2 (x, y) ≥ Ct1 (x, y) for all x, y in [0, 1]× [0, 1],
for all 0 < t2 ≤ t1 ≤ 1.

Example 4.6. Let C be a copula in the Gumbel–Barnett family (cf. [18]), that is
φ (x) = log (1− θ log x). Then

φ′ (x) =
−θ

x (1− θ log x)
and ψ (x) = log θ − log x− log (1− θ log x) ,

which is a convex function on [0, 1], and so Ct2 (u) ≥ Ct1 (u) for all u in [0, 1]d, for
all 0 < t2 ≤ t1 ≤ 1. In that case X given Xi ≤ Fi(t) for all i = 1, . . . , d is more and
more positively dependent as t decreases toward 0 should be understood as X given
Xi ≤ Fi(t) for all i = 1, . . . , d is less and less negatively dependent as t decreases
toward 0. This is a direct implication of the fact that the conditional copula of a
Gumbel–Barnett copula remains in this family, with a smaller parameter.

Example 4.7. Let C be a Frank copula, with generator

φ (x) = − log [(exp (−θx)− 1) / (exp (−θ)− 1)] ,

then

φ′ (t) =
θ exp (−θx)

exp (−θx)− 1
and ψ (t) = log θ − θx− log (1− exp (−θx)) ,

which satisfies ψ′′ (x) = −θ2 exp (−θx) / [exp (−θx)− 1]2 ≤ 0: ψ is concave, and so
Ct2 (u) ≤ Ct1 (u) for all u in [0, 1]d, for all 0 < t2 ≤ t1 ≤ 1.
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Example 4.8. Let C be a Gumbel copula, with generator φ (x) = (− log x)θ, θ ≥ 1,
then

φ′ (x) = −θ (− log x)θ−1
/x, and ψ (x) = log θ − log x + (θ − 1) log (log [−x])

This function being twice differentiable, one gets

ψ′′ (x) =
(log x)2 − [θ − 1] log x− [θ − 1]

x2 [log x]2
=

h (log x)
x2 [log x]2

,

where h (y) = y2 − [θ − 1] y − [θ − 1]: this polynomial has two (real) roots, and one
is negative. So finally, ψ′′ (x) ≤ 0 on ]0, x0] and ψ′′ (x) ≥ 0 on [x0, 1] for some x0: ψ
is neither concave nor convex.
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