[1] Bortoff S., Spong W.: Pseudolinearization of the acrobot using spline functions. In: 31st IEEE Conference on Decision and Control, Tucson 1992, pp. 593–598
[2] Furuta K., Yamakita M.: Swing up control of inverted pendulum. In: Industrial Electronics – Control and Instrumentation, Japan 1991, pp. 2193–2198
[3] Grizzle J., Moog, C., Chevallereau C.:
Nonlinear control of mechanical systems with an unactuated cyclic variable. IEEE Trans. Automat. Control 50 (2005), 559–576
DOI 10.1109/TAC.2005.847057 |
MR 2141560
[4] Khalil H. K.:
Nonlinear Systems. Prentice-Hall, Englewood Cliffs, N.J. 1996
Zbl 1140.93456
[6] Martinez S., Cortes, J., Bullo F.:
A catalog of inverse-kinematics planners for underactuated systems on matrix groups. IEEE Trans. Robotics and Automation 1 (2003), 625–630
MR 2587606
[7] Murray R., Hauser J.: A case study in approximate linearization: The acrobot example. In: Proc. American Control Conference, San Diego 1990
[8] Spong M.: Control Problems in Robotics and Automation. Springer–Verlag, Berlin 1998
[9] Stojic R., Chevallereau C.: On the Stability of biped with point food-ground contact. In: Proc. 2000 IEEE Internat. Conference Robotics and Automation ICRA, 2000, pp. 3340–3345
[10] Stojic R., Timcenko O.: On control of a class of feedback nonlinearizable mechanical systems. In: WAG98, World Automation Congress, 1998
[11] Wiklund M., Kristenson, A., Åström K.: A new strategy for swinging up an inverted pendulum. In: Proc. IFAC 12th World Congress, 1993, vol. 9, pp. 151–154
[12] Zikmund J., Moog C.: The structure of 2-bodies mechanical systems. In: 45st IEEE Conference on Decision and Control, San Diego 2006, pp. 2248–2253