[1] Aplevich J. D.:
Time-domain input-output Representations of linear systems. Automatica 17 (1981), 3, 509–522
MR 0628500 |
Zbl 0463.93031
[2] Aplevich J. D.:
Implicit Linear Systems. (Lecture Notes in Control and Information Sciences 152.) Springer–Verlag, Berlin 1991
MR 1100921 |
Zbl 0764.93001
[3] Armentano V. A.:
The pencil $\left( sE-A\right)$ and controllability-observability for generalized linear systems: a geometric approach. SIAM J. Control Optim. 24 (1986), 4, 616–638
MR 0846371
[4] Bernhard P.:
On singular implicit dynamical systems. SIAM J. Control Optim. 20 (1982), 5, 612–633
MR 0667644
[5] Bonilla M., Malabre M.:
Geometric minimization under external equivalence for implicit descriptions. Automatica 31 (1995), 6, 897–901
MR 1337338 |
Zbl 0831.93010
[6] Bonilla M., Malabre M.:
Structural matrix minimization algorithm for implicit descriptions. Automatica 33 (1997), 4, 705–710
MR 1448965 |
Zbl 0913.93012
[7] Bonilla M., Malabre, M., Fonseca M.:
On the approximation of non–proper control laws. Internat. J. Control 68 (1997), 4, 775–796
MR 1689656 |
Zbl 0897.93053
[8] Bonilla M., Malabre M.: More about non square implicit descriptions for modelling and control. In: Proc. 39th IEEE Conference on Decision and Control 2000, pp. 3642–3647
[9] Bonilla M., Malabre M.:
On the control of linear systems having internal variations. Automatica 39 (2003), 11, 1989–1996
MR 2142835
[11] Cobb D.:
Controllability, Observability and Duality in Singular Systems. IEEE Trans. Automat. Control AC-29 (1984), 12, 1076–1082
MR 0771396
[12] Dai L.:
Singular Control Systems. (Lecture Notes in Control and Information Sciences 118.) Springer–Verlag, Berlin 1989
MR 0986970 |
Zbl 0669.93034
[13] Frankowska H.:
On the controllability and observability of implicit systems. Systems Control Lett. 14 (1990), 219–225
MR 1049356
[14] Gantmacher F. R.:
The Theory of Matrices. Vol. II. Chelsea, New York 1977
Zbl 0927.15002
[15] Kučera V., Zagalak P.:
Fundamental theorem of state feedback for singular systems. Automatica 24 (1988), 5, 653–658
MR 0966689
[16] Kuijper M.:
First-order Representations of Linear Systems. Ph.D. Thesis. Katholieke Universiteit Brabant, Amsterdam 1992
Zbl 0863.93001
[17] Kuijper M.:
Descriptor representations without direct feedthrough term. Automatica 28 (1992), 633–637
MR 1166034 |
Zbl 0766.93026
[18] Lewis F. L.:
A survey of linear singular systems. Circuits Systems Signal Process. 5 (1986), 1, 3–36
MR 0893725 |
Zbl 0613.93029
[19] Lewis F. L.:
A tutorial on the geometric analysis of linear time-invariant implicit systems. Automatica 28 (1992), 1, 119–137
MR 1144115 |
Zbl 0745.93033
[20] Loiseau J. J.:
Some geometric considerations about the Kronecker normal form. Internat. J. Control 42 (1985), 6, 1411–1431
MR 0818345 |
Zbl 0609.93014
[21] Malabre M.:
Generalized linear systems, geometric and structural approaches. Linear Algebra Appl. 122/123/124 (1989), 591–621
MR 1020003 |
Zbl 0679.93048
[22] Malabre M.: More geometry about singular systems. In: Proc. 26th IEEE Conference on Decision and Control 1987, pp. 1138–1139
[23] Özçaldiran K.:
A geometric characterization of the reachable and controllable subspaces of descriptor systems. Circuits Systems Signal Process. 5 (1986), 1, 37–48
MR 0893726
[24] Pacheco P., Bonilla, M., Malabre M.: Proper exponential approximation of non proper compensators: The MIMO case. In: Proc. 42nd IEEE Conference on Decision and Control 2003, pp. 110–115
[25] Polderman J. W., Willems J. C.:
Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer–Verlag, New York 1998
MR 1480665 |
Zbl 0940.93002
[28] Verghese G. C.: Further notes on singular descriptions. JACC TA4 (1981), Charlottesville
[29] Verghese G. C., Lévy B. C., Kailath T.:
A generalized state-space for singular systems. IEEE Trans. Automat. Control 26 (1981), 4, 811–831
MR 0635842
[30] Willems J. C.:
Input-output and state space representations of finite-dimensional linear time-invariant systems. Linear Algebra Appl. 50 (1983), 81–608
MR 0699576 |
Zbl 0507.93017
[31] Wong K. T.:
The eigenvalue problem $\lambda Tx+Sx. $ J. Differential Equations 1 (1974), 270–281
MR 0349711 |
Zbl 0327.15015
[32] Zagalak P., Kučera V.:
Fundamental theorem of state feedback: The case of infinite poles. Kybernetika 27 (1991), 1, 1–11
MR 1099510 |
Zbl 0725.93049