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K Y B E R N E T I K A — V O L U M E 4 4 ( 2 0 0 8 ) , N U M B E R 3 , P A G E S 3 6 0 – 3 7 2

EXTERNAL PROPERNESS

Moisés Bonilla, Michel Malabre and Jaime Pacheco

In this paper, we revisit the structural concept of properness. We distinguish between
the properness of the whole system, here called internal properness, and the properness
of the “observable part” of the system. We give geometric characterizations for this last
properness concept, namely external properness.
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Notation, Geometric Algorithms, System, and Subspaces

Notation. Script capitals V, V, . . ., denote linear spaces with elements v, w, . . .;
{0} is the zero subspace. The dimension of a space V is denoted dim(V). When
V ⊂ V, VV or V/V stands for the quotient space V modulo V. The direct sum of
independent spaces is written as ⊕. Given a linear map X : V → V, Im X = XV
denotes its image, and KX , or sometimes Ker X, denotes its kernel. We write X−1T
for the inverse image of the subspace T by the linear map X. We write (Y −1X)ηT
for Y −1X

(
Y −1X(· · · (Y −1XT ))

)
, η times. {x, y, z} stands for the subspace spanned

by the vectors x, y and z. ei stands for the vector with a 1 in its ith component and
0 in its other components. R+ = {r ∈ R : r ≥ 0}. WT is the collection of all maps
from T to W. C∞(R+,Rq) is the set of infinitely differentiable functions mapping
from R+ to Rq.

Geometric Algorithms. Given the maps X : V → V, Y : V → V and Z :
V → Z, and the subspaces K ⊂ V and L ⊂ V, we have the two following popular
geometric algorithms (see mainly [22, 23, 28]):

ALG–V. – Algorithm for computing the supremal (X,Y,L) invariant subspace con-
tained in K ([K : X,Y,L]):

V0
[K:X,Y,L] = V , Vµ+1

[K:X,Y,L] = K ∩X−1
(
Y Vµ[K:X,Y,L] + L

)
. (ALG–V)

which limit is V∗[K:X,Y,L] = sup{T ⊂ K| XT ⊂ Y T + L}. In the case that
L = Im Z, we write [K : X,Y, Z] instead of [K : X,Y, Im Z]. In the case that
L = {0}, we write [K : X,Y ] instead of [K : X,Y, {0}].
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ALG–S. – Algorithm for computing the infimal (L, Y,X) invariant subspace con-
tained in K, related to L, and initialized in R, whereR ⊂ V and YR ⊂ XR+L
([K,R : L, Y,X]):

S0
[K,R:L,Y,X] = K∩R , Sµ+1

[K,R:L,Y,X] = K∩Y −1
(
XSµ[K,R:L,Y,X]+ L

)
. (ALG–S)

where the limit is S∗[K,R:L,Y,X] = inf{S ⊂ K| S = Y −1(XS + L)}.
In the case that L = {0}, we write [K,R : Y,X] instead of [K,R : {0}, Y,X].
In the case that R = {0}, we write [K : L, Y,X] instead of [K, {0} : L, Y,X].

System. In this paper we deal with dynamical systems Σ = (T ,W = Y ⊕ U ,B)
∈ Lp+m, where T = R+ is the time set, W is the space of external variables, Y
is the output space, U is the input space. Note that the splitting of W into two
parts, Y and U , is given a priori. This separation between inputs and outputs is
often imposed by the requirements on the systems we are dealing with (see [16]).
This setting is thus slightly different from the classic one introduced by Willems (see
[25]) where the separation is made a posteriori : inputs are signals which are “causes”
while outputs are “effects” and the separation is made in order to always get a proper
transfer function matrix between those selected inputs and outputs. We work in the
context where this separation is given a priori, which explains that properness has
to be analyzed. Concerning the so-called behaviour B, our setting is also slightly
different from that of Willems: the signals are supposed to be infinitely differentiable
(as in [16]) and not locally integrable. This makes possible the a priori separation
between u and y (see Remark 3.3.18 in [25]). Hence B ⊂ C∞(R+,Rp+m) ⊂ WT is
the behaviour of the system. Lp+m is the set for which B is the solution set of the
following (E,A,B,C) representation [16]:

Eẋ(t) = Ax(t) +Bu(t) ; y(t) = Cx(t) (1)

where E and A: X → X , B: U → X , and C: X → Y are linear maps. The
finite–dimensional spaces X and X are the descriptor variable and equation spaces.

Representation (1) was introduced by Rosenbrock [26] who called it generalized;
it is also usual to call it implicit, descriptor, or singular (see for example [19]). Let
us note that:

1. We are working with usual time functions and not with generalized functions
(distributions [10, 27]). In this framework there are no impulsions. As conse-
quence, minimality is not considered in the context of generalized functions,
but in the usual time framework, i. e. through the notion of external minimality
[5, 17].

2. The system is defined in T = R+ = [0, +∞), which implies that the initial
conditions are consistent and thus there are no internal switches for introducing
initial conditions in the derivative actions, and thus the initial conditions are
only present for the integrators.

3. The behaviour is contained in C∞(R+,Rp+m), which implies that all the in-
volved time signal are smooth, i. e. all their time derivatives exist in (0, +∞).
For t = 0, it is sufficient to ask for the maximally free variable (i. e. the input
part of the manifest variable) limt→0− u(t) = u(0).
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Also note that the dimensions of X and X are not necessarily equal.

Subspaces. Related with the (E,A,B,C) representation (1) are the following sub-
spaces:

The supremal (A,E,B) invariant subspace contained in X(
VµX :=Vµ[X :A,E,B], with limit V∗X

)
:V∗X characterizes (together with EV∗X+Im B)

the set of all possible trajectories of (1) which are not identically zero for any
input u [5]. Frankowska [13] called strict systems the (E,A,B,C) representa-
tions (1) satisfying V∗X = X .

The supremal (A,E) invariant subspace contained in X(
VµX0 := Vµ[X :A,E],with limit V∗X0

)
:Wong [31] and Armentano [3] characterized

all the exponential trajectories of (1) by V∗X0 (together with EV∗X0). Loiseau
[20] applied this subspace to general pencils in order to study structural prop-
erties with the Kronecker theory (see also [21]).

The supremal (A,E) invariant subspace contained in Ker C(
Vµ0 := Vµ[KC :A,E], with limit V∗0

)
:V∗0 characterizes (together with EV∗0 ) the set

of all exponential trajectories of (1) which are unobservable at the output y [5].

The infimal (E,A) invariant subspace
(
SµX0 = Sµ[X ,KE :E,A], with limit S∗X0

)
:

Armentano [3] characterized the set of all trajectories of (1) due to pure differ-
ential actions by S∗X0 (together with AS∗X0). Loiseau [20] applied this subspace
to general pencils in order to study structural properties with the Kronecker
theory (see also [21]).

The supremal almost (A,E) controllability subspace contained in Ker C(
Rµa0 =Sµ[KC ,KE :E,A], with limit R∗a0

)
:R∗a0 characterizes (together with AR∗a0)

the set of all the trajectories of (1) due to pure differential actions with no
influence on the input-output trajectories. Bonilla et al. [7] called R∗a0 the
differential redundant subspace (see also [5]).

1. INTRODUCTION

The (E,A,B,C) representation (1) can describe proper systems, non-proper sys-
tems, systems with internal restrictions, and systems with internal structure varia-
tions (see for example [1, 8, 9, 11, 18, 29].

When people are interested in the physical implementation of control elements
such as control laws, observers, filters, failure detectors, etc..., they are looking
for square invertible systems without pure time derivative actions, namely they
are looking for regular proper systems. So, let us then recall some definitions and
characterizations:

Definition 1. (Gantmacher [14]) A pencil [λE − A] is regular if it is square and
it has full generic rank, i. e. det[λE − A] is not identically zero. Representation (1)
is called regular if [λE −A] is regular.
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Theorem 1. (Bernhard [4], Armentano [3], and Malabre [21]) A pencil [λE −A]
is regular if and only if X = V∗X0 ⊕ S∗X0. (2)

Definition 2. (Bernhard [4] and Armentano [3]) The (E,A,B,C) representation
(1) is internally proper if the pencil [λE −A] is proper, namely [λE −A] is regular
and has no infinite elementary divisor of order greater than 1, i. e. the dynamics of
the system includes no derivator.

Kučera and Zagalak [15] characterized the dynamics of all proper systems that
can be obtained from a regular representation (1) by applying descriptor variable
feedback (see also [32]). Dai [12] called normal the (E,A,B,C) representations
which are internally proper and characterized the descriptor variable feedbacks from
which closed–loop systems have no infinite poles (no derivators); this property was
called normalizability.

Let us point out that this notion of internal properness is related to the absence
of pure time derivative actions in (1). In some situations, it is enough to get such
a property on the input–output behaviour; for example Aplevich [2] defined the
“properness” as the property of having no transmission poles at infinity, that is to
say, having no pure time derivative actions in the input–output behaviour.

In this paper we are interested in finding geometric conditions which guarantee
the properness concept stated by Aplevich. For this, we distinguish the properness
concept of Definition 2, internal properness, and the properness concept of Aple-
vich [2], external properness. In Section 2 we formally define the external properness
and we characterize it. In Section 3 we give two illustrative examples and, finally,
in Section 4 we conclude.

2. EXTERNAL PROPERNESS

In order to formally define the external properness, we need to recall some basic
concepts about external equivalence and external minimality:

Definition 3. (Willems [30]) Two representations are called externally equiva-
lent if the corresponding sets of all possible trajectories for the external variables
(external behaviours) are the same.

In representations like (1), the external variables are a priori split into two parts,
u(t) and y(t).

Definition 4. (Kuijper [17] and Bonilla and Malabre [5]) The implicit represen-
tation (1), with X and X not necessarily of the same dimension, is minimal among
all externally equivalent representations of the same type if: 1) the corresponding
descriptor equation has the least possible number of rows, and 2) the descriptor
variable has the least possible number of components.
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Bonilla and Malabre [5] showed that the (E,A,B,C) representation is externally
equivalent to a minimal one (Em, Am, Bm, Cm), called the externally minimal part.
Also Kuijper [17] gave necessary and sufficient conditions for external minimality:

Theorem 2. (Kuijper [17]) A given (E,A,B,C) representation is minimal, among
all externally equivalent representations of the type (1), if and only if: (i) the matrix
[E B] is epic, (ii) the matrix [ET CT ]T is monic, and (iii) the matrix

"
λE − A
C

#
has

full column rank for all complex number λ.

Theorem 3. (Bonilla and Malabre [5]) Any given (E,A,B,C) representation
is externally equivalent to the minimal one (Em, Am, Bm, Cm), whose maps are
uniquely defined as follows:

EmΠm = PmE; AmΠm = PmA; Bm = PmB; CmΠm = C

Πm : X → V∗X /(V?0 + V∗X ∩R∗a0) : canonical projection

Pm : X → (EV∗X + Im B)/(EV∗0 +A(V∗X ∩R∗a0)) : canonical projection.

(3)

In the light of these notions, we associate external properness with the properness
of the external behaviour of the representation; more precisely:

Definition 5. The (E,A,B,C) representation (1) is externally proper if its exter-
nally minimal part is internally proper.

Let us state the first principal result:

Theorem 4. If V∗0 = {0} 1 and V∗X = X 2, then (1) is externally proper if and
only if:

V∗X0 + S∗X0 = X , V∗X0 ∩ S∗X0 ⊂ R∗a0 and dim
(V∗X0 + (E−1A)2R∗a0

V∗X0 + E−1AR∗a0

)
= 0. (4)

Before giving the proof, let us remark that there is no loss of generality when
making these two assumptions; we do it, in order to avoid unnecessary algebraic
complications. Indeed, if these two assumptions are not fulfilled we can take the
quotient by V∗0 (to take out the maximal unobservable part) and take the restriction
to V∗X (the set of all no null trajectories). Let us also note that in the case of exter-
nally minimal representations, these two assumptions are automatically fulfilled.

P r o o f . The proof is given in 4 steps:
1. From (2), regularity is equivalent to: X = S∗X0 ⊕ V∗X0. Also, the absence of

infinite zeros of order greater than one is equivalent to (see [21]):

1 All the exponential trajectories of (1) are observable.
2 There are no trajectories identically equal to zero whatever be the input action.
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dim
(
(V∗X0 + S2

X0)/(V∗X0 + S1
X0)

)
= 0.

2. Let us next show that the (Em, Am, Bm, Cm) representation is internally proper
if and only if:

X = T ∗1 + T ∗2 , T ∗1 ∩ T ∗2 = Ker Πm and

dim
(
T ∗2 +T 2

1
T ∗2 +T 1

1

)
= dim

(
(T ∗2 +T 2

1 )∩Ker Πm

(T ∗2 +T 1
1 )∩Ker Πm

)

where (recall (ALG–V) and (ALG–S)):

T µ2 = Vµ[X :A,E,KPm ] and T µ1 = Sµ[X ,KΠm :KPm ,E,A], for µ ≥ 0.

Indeed, from the first item, the minimal (Em, Am, Bm, Cm) representation is
regular if and only if: Xm = S∗Xm0⊕V∗Xm0, where Xm = Im Πm. Now from (3)
and (ALG–S)–[Xm : Em, Am], we get:

Π−1
m Sµ+1

Xm0 = (EmΠm)−1AmSµXm0 = E−1P−1
m AmΠmΠ−1

m SµXm0

= E−1P−1
m PmAΠ−1

m SµXm0 = E−1(AΠ−1
m SµXm0 + Ker Pm)

namely: T µ1 = Π−1
m SµXm0. In a similar way: T µ2 = Π−1

m VµXm0. And thus:

Xm = S∗Xm0 ⊕ V∗Xm0 if and only if X = T ∗1 + T ∗2 and T ∗1 ∩ T ∗2 = Ker Πm

On the other hand:

dim
(V∗Xm0 + S2

Xm0

V∗Xm0 + S1
Xm0

)
= dim

(
Πm

(
T ∗2 + T 2

1

)

Πm (T ∗2 + T 1
1 )

)

= dim
(T ∗2 + T 2

1

T ∗2 + T 1
1

)
− dim

((
T ∗2 + T 2

1

)
∩Ker Πm

(T ∗2 + T 1
1 ) ∩Ker Πm

)
.

And thus
dim

(V∗Xm0+S2
Xm0

V∗Xm0+S1
Xm0

)
= 0

if and only if dim
(
T ∗2 +T 2

1
T ∗2 +T 1

1

)
= dim

(
(T ∗2 +T 2

1 )∩Ker Πm

(T ∗2 +T 1
1 )∩Ker Πm

)
.

3. Let us now show that:

If V∗0 = {0} and V∗X = X then T µ1 =
(
E−1A

)µR∗a0 and T µ2 = VµX0
+R∗a0.

Moreover:

T ∗1 = S∗X0 and
T ∗2 + T 2

1

T ∗2 + T 1
1

=
V∗X0 + (E−1A)2R∗a0

V∗X0 + E−1AR∗a0.

Indeed, from (3) we get for this case Ker Πm = R∗a0 and Ker Pm = AR∗a0,
and thus T 1

1 = E−1AR∗a0, which implies (recall that R∗a0 ⊂ E−1AR∗a0): T µ1 =(
E−1A

)µR∗a0.
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Note that E−1AR∗a0 ⊃ Ker E=S0
X0+R∗a0. Let us then assume that

(
E−1A

)µ

R∗a0⊃Sµ−1
X0 +R∗a0. This implies

(
E−1A

)µ+1R∗a0⊃SµX0+E−1AR∗a0⊃SµX0+R∗a0.

On the other hand, R∗a0 ⊂ S∗X0, implies that:
(
E−1A

)µR∗a0⊂S∗X0. Therefore:

S∗X0
=S∗X0

+R∗a0⊂
(
E−1A

)dimXR∗a0⊂S∗X0
, i. e. T ∗1 =

(
E−1A

)dimXR∗a0 =S∗X0.

Now with the view that T 0
2 = X = V0

X0 = V0
X0 + R∗a0, let us assume that

T µ2 = VµX0
+R∗a0. This assumption implies (remember that ER∗a0 ⊂ AR∗a0):

T µ+1
2 = A−1(EVµX0 + ER∗a0 +AR∗a0) = A−1(EVµX0 +AR∗a0)

= A−1EVµX0 +R∗a0 = Vµ+1
X0 +R∗a0

namely T µ2 = VµX0 +R∗a0, which implies T ∗2 = V∗X0 +R∗a0.
And since R∗a0 ⊂ (E−1A)ηR∗a0, for η ≥ 1, we get: T ∗2 + T µ1 = V∗X0 + R∗a0 +
(E−1A)µR∗a0 = V∗X0 + (E−1A)µR∗a0.

4. Finally, let us note that (remember that S∗X0 ⊃ R∗a0):

T ∗1 + T ∗2 = S∗X0 + V∗X0 +R∗a0 = S∗X0 + V∗X0 and
T ∗1 ∩ T ∗2 = S∗X0

∩ (V∗X0 +R∗a0) = S∗X0 ∩ V∗X0 +R∗a0

which prove the first two conditions in (4).

Also:

dim

((
T ∗2 + T 2

1

)
∩Ker Πm

(T ∗2 + T 1
1 ) ∩Ker Πm

)
= dim

((
V∗X0 +R∗a0 + T 2

1

)
∩R∗a0

(V∗X0 +R∗a0 + T 1
1 ) ∩R∗a0

)

= dim
(R∗a0

R∗a0

)
= 0

which proves the third condition in (4) and completes the proof. ¤

Let us note that the three conditions (i) – (iii) of Theorem 2 are related with
the subspaces of Theorem 3 as follows (see [6]): (i) iff EV∗X + Im B = X , (ii) iff
R∗a0 = {0}, and (iii) iff V∗0 = {0}3.

In addition, if the representation is regular4, we get:
3 When there are no algebraic restrictions on the input space U (equivalently E−1Im B ⊂ V∗X ),

(i) is equivalent to V∗X = X (the system is strict in the sense of Frankowska [13]).
4 In this case, the behaviour is specified in the following more explicit way: Σ = (R+,Rm+p,B),

with B = Bexp
[A,B,C,D]

⊕Bpol
[N,Γ,Θ]

, where the exponential and polynomial behaviours, Bexp
[A,B,C,D]

and Bpol
[N,Γ,Θ]

, are defined as:

Bexp
[A,B,C,D]

=
n

(win, w
exp
out ) ∈ C∞(R+,Rm+p)

˛̨
∃ xe,0 ∈ Rne ,

wexp
out (t) = C

“
eAtxe,0 +

R t
0 eA(t−τ)Bwin(τ)dτ

”
+Dwin(t)

o

Bpol
[N,Γ,Θ]

=
n

(win, w
pol
out) ∈ C∞(R+,Rm+p)

˛̨
wpol

out(t) =Θ
Pnp−1
j=1 NjΓ dj

dtj
win(t)

o

where win is the input variable and wexp
out and wpol

out are the output variables.
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Corollary 1. If V∗0 = {0} 1, V∗X = X 2, and X = V∗X0⊕S∗X0
5, then (1) is externally

proper if and only if
E−1AR∗a0 = S∗X0. (5)

P r o o f . If the implicit representation (1) is proper, we get from (2): X = V∗X0 ⊕
S∗X0. In this case, the first two conditions in (4) are automatically satisfied. Since(
E−1A

)µR∗a0 ⊂
(
E−1A

)dimXR∗a0 = S∗X0
, we get: V∗X0∩

(
E−1A

)µR∗a0 = V∗X0
∩S∗X0∩(

E−1A
)µR∗a0 = {0}. Then:

dim

(
V∗X0 +

(
E−1A

)2R∗a0

V∗X0
+ E−1AR∗a0

)
= dim

(
V∗X0 ⊕

(
E−1A

)2R∗a0

V∗X0 ⊕ E−1AR∗a0

)
= dim

((
E−1A

)2R∗a0

E−1AR∗a0

)
.

Thus
dim

(
V∗X0+

(
E−1A

)2
R∗a0

V∗X0+E−1AR∗a0

)
= 0

if and only if E−1AR∗a0 =
(
E−1A

)2R∗a0 =
(
E−1A

)dimXR∗a0 = S∗X0.
¤

Let us note that in [7] the sufficient condition R∗a0 = S∗X0 was used.

3. ILLUSTRATIVE EXAMPLES

Example 1. Let us consider the system of Figure 1, which (E,A,B,C) represen-
tation is (x̄ =

[
x z ξT

]T ):



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0




˙̄x =




−β −ε2 0 0 0
1/ε −1/ε 0 0 1/ε
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x̄+




0
0
−1
0
0



u

y =
[

0 1 0 0 0
]
x̄. (6)

In order to enhance the involved subspaces, let us pre-multiply (6) by L and let
us apply the change of variable x = Rx̃, with (see [24] for computation details):

R =

2
4 I2

−ε 0 0
−1/ε2 1/ε 0

0 I3

3
5 and L =

2
4 I2

−εβ − 1 ε 0
1− 1/ε3 1/ε2 −1/ε

0 I3

3
5 . We obtain in

this way:



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0




˙̃x =




−β −ε2 0 0 0
1/ε −1/ε 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



x̃+




(εβ + 1)
(1/ε3 − 1)
−1
0
0



u

y =
[

0 1 −1/ε2 1/ε 0
]
x̃. (7)

5 The pencil [λE −A] is regular.
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u - 1
ξ1 - d/dt

ξ2 - d/dt
ξ3 -⊕

¾−1

?
- 1/ε -

©©
HH∫ z -y

¾¾ −ε2
⊕¾©©

HH
∫

x

6

- −β
6

Fig. 1. Example 1.

Applying algorithms (ALG–S)–[KC ,KE : E,A] and (ALG–S)–[X ,KE : E,A] to (7),
we get:

R∗a0 = {e5} ; E−1AR∗a0 = {e4, e5} ; S∗X0 = {e3, e4, e5}

We can see that: S∗X0 6= E−1AR∗a0. Then from Corollary 1, (6) is not externally
proper. Indeed, its transfer function is non proper:

G(s) = s2 s + β

εs2 + (1 + βε)s + β + ε2

Example 2. Let us consider the system of Figure 2, which (E,A,B,C) represen-
tation is ( x̄ =

[
x zT ξT

]T ):




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



ẋ =




−β −ε3 0 0 0 0
0 0 1 0 0 0

1/ε2 −1/ε2 −2/ε 0 0 1/ε2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



x

+
[

0 0 0 −1 0 0
]T
u

y =
[

0 1 0 0 0 0
]
x. (8)

In order to enhance the involved subspaces, let us pre-multiply (6) by L′ and let
us apply the change of variable x = R′x̃, with (see [24] for computation details):

R′ =

2
664

I3

0 0 0
1/ε2 0 0
−2/ε3 1/ε2 0

0 I3

3
775 and L′ =

2
664

I3

1 0 0
2/ε3 −1/ε2 0
−3/ε4 2/ε3 −1/ε2

0 I3

3
775. We obtain
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u - 1
ξ1 - d/dt

ξ2 - d/dt
ξ3 -⊕

¾−1

A
AAU

¾−2ε

?
- 1/ε2 -

©©
HH∫

z2

-
©©
HH∫

z1

-y

¾¾ −ε3
⊕¾©©

HH
∫

x

6

- −β
6

Fig. 2. Example 2.

in this way:



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




˙̃x =




−β −ε3 0 0 0 0
0 0 1 0 0 0

1/ε2 −1/ε2 −2/ε 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



x̃

+
[
−1 −2/ε3 3/ε4 −1 0 0

]
u

y =
[

0 1 0 1/ε2 0 0
]
x̃. (9)

Applying algorithms (ALG–S)–[KC ,KE : E,A] and (ALG–S)–[X ,KE : E,A] to (9),
we get:

R∗a0 = {e5, e6} ; E−1AR∗a0 = {e4, e5,e6} ; S∗X0 = {e4, e5, e6}

We can see that S∗X0 = E−1AR∗a0. Then from Corollary 1, (8) is externally proper.
Indeed, it is externally equivalent to the following state space representation (see
Figure 3):

˙̂x =



−β −ε2 0
0 0 1

1/ε2 −1/ε2 −2/ε


 x̂+



−1

−2/ε3

3/ε4


u (10)

y =
[

0 1 0
]
x̂+ (1/ε2)u.

Its transfer function is proper:

G(s) = s2 s + β

ε2s3 + (ε2β + 2ε)s2 + (2βε+ 1)s + β + ε3
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u - 3/ε2 -

6 6

6 6
?

?

−2/ε3 1/ε2s s
−1

⊕ -⊕ ⊕ -

¾

s

−1

A
AAU

¾−2ε

?
- 1/ε2 -

©©
HH∫

x̂3

-
©©
HH∫ x̂2- y

¾¾ −ε2
⊕¾©©

HH
∫

x̂1 s

6

- −β
6

Fig. 3. Equivalent system of (8).

4. CONCLUSION

In this paper we have revisited the structural concept of properness. We have dis-
tinguished between the properness of the whole representation (here named internal
properness) and the properness of its externally minimal part (here named external
properness). We have given geometric characterizations for external properness.
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[23] K. Özçaldiran: A geometric characterization of the reachable and controllable sub-

spaces of descriptor systems. Circuits Systems Signal Process. 5 (1986), 1, 37–48.
[24] P. Pacheco, M. Bonilla, and M. Malabre: Proper exponential approximation of non

proper compensators: The MIMO case. In: Proc. 42nd IEEE Conference on Decision
and Control 2003, pp. 110–115.

[25] J. W. Polderman and J. C. Willems: Introduction to Mathematical Systems Theory:
A Behavioral Approach. Springer–Verlag, New York 1998.

[26] H. H. Rosenbrock: State-Space and Multivariable Theory. Nelson, London 1970.
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