[1] Barndorff-Nielsen O. E.:
Information and Exponential Families in Statistical Theory. Wiley, New York 1978
MR 0489333 |
Zbl 0387.62011
[2] Besag J.: Statistical analysis of non-lattice data. The Statistician 24 (1975), 179–195
[3] Csiszár I., Matúš F.:
Generalized maximum likelihood estimates for exponential families. Probability Theory and Related Fields (to appear)
MR 2372970 |
Zbl 1133.62039
[4] Dobrushin R. L.:
Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15 (1970), 458–486
Zbl 0264.60037
[5] Gilks W. R., Richardson, S., (eds.) D. J. Spiegelhalter:
Markov Chain Monte Carlo in Practice. Chapman and Hall, London 1996
MR 1397966 |
Zbl 0832.00018
[6] Janžura M.:
Asymptotic results in parameter estimation for Gibbs random fields. Kybernetika 33 (1997), 2, 133–159
MR 1454275 |
Zbl 0962.62092
[7] Janžura M.: A parametric model for large discrete stochastic systems. In: Second European Conference on Highly Structured Stochastic Systems, Pavia 1999, pp. 148–150
[8] Janžura M., Boček P.: A method for knowledge integration. Kybernetika 34 (1988), 1, 41–55
[9] Jaynes E. T.: On the rationale of the maximum entropy methods. Proc. IEEE 70 (1982), 939–952
[10] Jiroušek R., Vejnarová J.: Construction of multidimensional model by operators of composition: Current state of art. Soft Computing 7 (2003), 328–335
[12] Perez A.:
$\varepsilon $-admissible simplifications of the dependence structure of random variables. Kybernetika 13 (1979), 439–449
MR 0472224
[13] Perez A., Studený M.:
Comparison of two methods for approximation of probability distributions with prescribed marginals. Kybernetika 43 (2007), 5, 591–618
MR 2376326 |
Zbl 1144.68379
[14] Winkler G.:
Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer–Verlag, Berlin 1995
MR 1316400 |
Zbl 0821.68125
[15] Younes L.:
Estimation and annealing for Gibbsian fields. Ann. Inst. H. Poincaré 24 (1988), 2, 269–294
MR 0953120 |
Zbl 0651.62091