[1] Csiszár I., Matúš F.:
Information projections revisited. IEEE Trans. Inform. Theory 49 (2003), 1474–1490
MR 1984936 |
Zbl 1063.94016
[2] Kellerer H. G.:
Verteilungsfunktionen mit gegebenem Marginalverteilungen (in German, translation: Distribution functions with given marginal distributions). Z. Wahrsch. verw. Gerbiete 3 (1964), 247–270
MR 0175158
[4] Perez A.:
$\varepsilon $-admissible simplifications of the dependence structure of random variables. Kybernetika 13 (1979), 439–449
MR 0472224
[5] Perez A.: The barycenter concept of a set of probability measures as a tool in statistical decision. In: The book of abstracts of the 4th Internat. Vilnius Conference on Probability Theory and Mathematical Statistics 1985, pp. 226–228
[6] Perez A.: Princip maxima entropie a princip barycentra při integraci dílčích znalostí v expertních systémech (in Czech, translation: The maximum entropy principle and the barycenter principle in partial knowledge integration in expert systems). In: Metody umělé inteligence a expertní systémy III (V. Mařík and Z. Zdráhal, eds.), ČSVT – FEL ČVUT, Prague 1987, pp. 62–74
[7] Perez A.: Explicit expression Exe – containing the same multiinformation as that in the given marginal set – for approximating probability distributions. A manuscript in Word, 2003
[8] Studený M.: Pojem multiinformace v pravděpodobnostním rozhodování (in Czech, translation: The notion of multiinformation in probabilistic decision-making). CSc Thesis, Czechoslovak Academy of Sciences, Institute of Information Theory and Automation, Prague 1987
[9] Studený M.: Probabilistic Conditional Independence Structures. Springer–Verlag, London 2005