Previous |  Up |  Next

Article

Keywords:
lattice effect algebra; MV-effect algebra; Archimedean effect algebra; sharp element; central element; atom
Summary:
Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.
References:
[1] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Math. Soc. 88 (1958), 467–490 MR 0094302 | Zbl 0084.00704
[2] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures Theory. Kluwer Academic Publications, Dordrecht 2000 MR 1861369
[3] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346 MR 1304942
[4] Greechie R. J., Foulis, D., Pulmannová S.: The center of an effect algebra. Order 12 (1995), 91–106 MR 1336539 | Zbl 0846.03031
[5] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29
[6] Kôpka F.: Compatibility in D-posets. Internat. J. Theor. Phys. 34 (1995), 1525–1531 MR 1353696 | Zbl 0851.03020
[7] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 MR 1290269
[8] Riečanová Z.: Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54 MR 1978468
[9] Riečanová Z.: Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 2, 143–150 MR 2241781
[10] Riečanová Z., Marinová, I., Zajac M.: Some aspects of generalized prelattice effect algebras. In: Theory and Application of Relational Structures as Knowledge Instruments II (H. de Swart et al., eds., Lecture Notes in Artificial Intelligence 4342), Springer–Verlag, Berlin 2006, pp. 290–317
Partner of
EuDML logo