[1] Chang C. C.:
Algebraic analysis of many-valued logics. Trans. Amer. Math. Math. Soc. 88 (1958), 467–490
MR 0094302 |
Zbl 0084.00704
[2] Dvurečenskij A., Pulmannová S.:
New Trends in Quantum Structures Theory. Kluwer Academic Publications, Dordrecht 2000
MR 1861369
[3] Foulis D. J., Bennett M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1325–1346
MR 1304942
[4] Greechie R. J., Foulis, D., Pulmannová S.:
The center of an effect algebra. Order 12 (1995), 91–106
MR 1336539 |
Zbl 0846.03031
[5] Jenča G., Riečanová Z.: On sharp elements in lattice effect algebras. BUSEFAL 80 (1999), 24–29
[7] Kôpka F., Chovanec F.:
D-posets. Math. Slovaca 44 (1994), 21–34
MR 1290269
[8] Riečanová Z.:
Continuous lattice effect algebras admitting order-continuous states. Fuzzy Sets and Systems 136 (2003), 41–54
MR 1978468
[9] Riečanová Z.:
Archimedean atomic lattice effect algebras in which all sharp elements are central. Kybernetika 42 (2006), 2, 143–150
MR 2241781
[10] Riečanová Z., Marinová, I., Zajac M.: Some aspects of generalized prelattice effect algebras. In: Theory and Application of Relational Structures as Knowledge Instruments II (H. de Swart et al., eds., Lecture Notes in Artificial Intelligence 4342), Springer–Verlag, Berlin 2006, pp. 290–317