[1] Cox D., Little, J., O’Shea D.:
Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Second Edition. Springer-Verlag, New York 1997
MR 1417938 |
Zbl 1118.13001
[2] Dawid A. P.:
Conditional independence in statistical theory. J. Roy. Statist. Soc. Ser. B 41 (1979), 1–31
MR 0535541 |
Zbl 0408.62004
[3] Dawid A. P.:
Conditional independence for statistical operations. Ann. Statist. 8 (1980), 598–617
MR 0568723 |
Zbl 0434.62006
[4] Dempster A. P.: Covariance selection. Biometrics 28 (1972), 157–175
[5] Frydenberg M.:
Marginalization and collapsibility in graphical interaction models. Ann. Statist. 18 (1990), 790–805
MR 1056337 |
Zbl 0725.62057
[7] Kauermann G.:
On a dualization of graphical Gaussian models. Scand. J. Statist. 23 (1996), 105–116
MR 1380485 |
Zbl 0912.62006
[9] Lauritzen S. L.:
Graphical Models. (Oxford Statistical Science Series 17.) Oxford University Press, New York 1996
MR 1419991 |
Zbl 1055.62126
[10] Levitz M., Perlman M. D., Madigan D.:
Separation and completeness properties for AMP chain graph Markov models. Ann. Statist. 29 (2001), 1751–1784
MR 1891745 |
Zbl 1043.62080
[11] Lněnička R.: On conditional independences among four Gaussian variables. In: Proc. Conditionals, Information, and Inference – WCII’04 (G. Kern-Isberner, W. Roedder, and F. Kulmann, eds.), Universität Ulm, Ulm 2004, pp. 89–101
[12] Matúš F.: Ascending and descending conditional independence relations. In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 189–200
[13] Matúš F.:
On equivalence of Markov properties over undirected graphs. J. Appl. Probab. 29 (1992), 745–749
MR 1174448 |
Zbl 0753.68080
[14] Matúš F.:
Conditional independences among four random variables II. Combin. Probab. Comput. 4 (1995), 407–417
MR 1377558 |
Zbl 0846.60004
[15] Matúš F.:
Conditional independence structures examined via minors. Ann. Math. Artif. Intell. 21 (1997), 99–128
MR 1479010 |
Zbl 0888.68097
[16] Matúš F.:
Conditional independences among four random variables III: final conclusion. Combin. Probab. Comput. 8 (1999), 269–276
MR 1702569 |
Zbl 0941.60004
[17] Matúš F.:
Conditional independences in Gaussian vectors and rings of polynomials. In: Proc. Conditionals, Information, and Inference – WCII 2002 (Lecture Notes in Computer Science 3301; G. Kern-Isberner, W. Rödder, and F. Kulmann, eds.), Springer, Berlin 2005, pp. 152–161
Zbl 1111.68685
[19] Matúš F., Studený M.:
Conditional independences among four random variables I. Combin. Probab. Comput. 4 (1995), 269–278
Zbl 0839.60004
[20] Pearl J.:
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, Calif. 1988
MR 0965765 |
Zbl 0746.68089
[21] Prasolov V. V.:
Problems and Theorems in Linear Algebra. (Translations of Mathematical Monographs 134.) American Mathematical Society 1996
MR 1277174 |
Zbl 1185.15001
[22] Studený M.: Conditional independence relations have no finite complete characterization. In: Trans. 11th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (S. Kubík and J. Á. Víšek, eds.), Vol. B, Academia, Prague, and Kluwer, Dordrecht 1991, pp. 377–396
[23] Studený M.:
Structural semigraphoids. Internat. J. Gen. Syst. 22 (1994), 207–217
Zbl 0797.60006
[24] Studený M.: Probabilistic Conditional Independence Structures. Springer, London 2005
[26] Šimeček P.: Classes of Gaussian, discrete and binary representable independence models have no finite characterization. In: Prague Stochastics (M. Hušková and M. Janžura, eds.), Matfyzpress, Charles University, Prague 2006, pp. 622–632
[27] Šimeček P.: Gaussian representation of independence models over four random variables. In: Proc. COMPSTAT 2006 – World Conference on Computational Statistics 17 (A. Rizzi and M. Vichi, eds.), Rome 2006, pp. 1405–1412
[28] Whittaker J.:
Graphical Models in Applied Multivariate Statistics. Wiley, New York 1990
MR 1112133 |
Zbl 1151.62053