Previous |  Up |  Next

Article

Keywords:
fuzzy $G_\delta$-neighbourhood; fuzzy $G_\delta$–$T_1$-ordered spaces; fuzzy $G_\delta$–$T_2$ ordered spaces
Summary:
$G_\delta$-separation axioms are introduced in ordered fuzzy topological spaces and some of their basic properties are investigated besides establishing an analogue of Urysohn’s lemma.
References:
[1] Azad K. A.: On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14–32 DOI 10.1016/0022-247X(81)90222-5 | MR 0626738 | Zbl 0511.54006
[2] Balasubramanian G.: Maximal fuzzy topologies. Kybernetika 31 (1995), 459–464 MR 1361307 | Zbl 0856.54004
[3] Chang C. L.: Fuzzy topological spaces. J. Math. Anal. Appl. 24 (1968), 182–190 DOI 10.1016/0022-247X(68)90057-7 | MR 0236859 | Zbl 0167.51001
[4] Katsaras A. K.: Ordered fuzzy topological spaces. J. Math. Anal. Appl. 84 (1981), 44–58 DOI 10.1016/0022-247X(81)90150-5 | MR 0639523 | Zbl 0512.54005
[5] Smets P.: The degree of belief in a fuzzy event. Inform. Sci. 25 (1981), 1–19 DOI 10.1016/0020-0255(81)90008-6 | MR 0651984 | Zbl 0472.62005
[6] Sostak A. P.: On a fuzzy topological structure. Suppl. Rend. Circ. Mat. Palermo 11 (1985), 89–103 MR 0897975 | Zbl 0638.54007
[7] Sostak A. P.: Basic structure of fuzzy topology. J. Math. Sci. 78 (1996), 662–701 DOI 10.1007/BF02363065 | MR 1384343
[8] Sugeno M.: An introductory survey of fuzzy control. Inform. Sci. 36 (1985), 59–83 DOI 10.1016/0020-0255(85)90026-X | MR 0813765 | Zbl 0586.93053
[9] Warren R. H.: Neighbourhoods, bases and continuity in fuzzy topological spaces. Rocky Mountain J. Math. 8 (1978), 459–470 DOI 10.1216/RMJ-1978-8-3-459 | MR 0478091
[10] Zadeh L. A.: Fuzzy sets. Inform. Control 8 (1965), 338–353 DOI 10.1016/S0019-9958(65)90241-X | MR 0219427 | Zbl 0139.24606
Partner of
EuDML logo