[2] Bary N. K.:
A Treatise on Trigonometric Series. Pergamon Press, Oxford 1964
Zbl 0129.28002
[4] El-Neweihi E., Govindarajulu Z.:
Characterizations of geometric distributions and discrete IFR (DFR) distributions using order statistics. J. Statist. Plann. Inf. 3 (1979), 85–90
DOI 10.1016/0378-3758(79)90044-2 |
MR 0529875
[6] Ferguson T. S.:
On characterizing distributions by properties of order statistics. Sankhya Series A 20 (1967), 265–278
MR 0226804 |
Zbl 0155.27302
[7] Ferguson T. S.:
On a Rao-Shanbhag characterization of the exponential/geometric distribution. Sankhya Series A 64 (2002), 247–255
MR 1981756 |
Zbl 1192.62033
[8] Fosam E. B., Shanbhag D. N.:
Certain characterizations of exponential and geometric distributions. J. Royal Statist. Soc. Series B 56 (1994), 157–160
MR 1257803 |
Zbl 0788.62016
[9] (1975) J. Galambos: Characterizations of probability distributions by properties of order statistics. In: Statistical Distributions in Scientific Work, Vol. 2: Characterizations and Appplications (G. P. Patil, S. Kotz, and J. K. Ord, eds.), D. Reidel, Boston 1975, II, pp. 89–101
[11] Hitha N., Nair U. N.:
Characterization of some discrete models by properties of residual life function. Cal. Statist. Assoc. Bulletin 38 (1989), 219–223
MR 1060161 |
Zbl 0715.62023
[12] Kalbfleish J. D., Prentice R. L.:
The Statistical Analysis of Failure Time Data. Wiley, New York 1980
MR 0570114
[13] Meintanis S. G., Iliopoulos G.:
Characterizations of the exponential distribution based on certain properties of its characteristic function. Kybernetika 39 (2003), 295–298
MR 1995733
[14] Rainville E. D.:
Infinite Series. The Macmillan Company, New York 1967
Zbl 0173.05702
[15] Rao B. L. S. P., Sreehari M.:
On some properties of geometric distribution. Sankhya Series A 42 (1980), 120–122
MR 0637996
[16] Rogers G. S.:
An alternate proof of the characterization of the density $Ax^{B}$. Amer. Math. Monthly 70 (1963), 857–858
DOI 10.2307/2312673 |
MR 1532316