Previous |  Up |  Next

Article

Keywords:
fuzzy linear programming; oblique fuzzy vector; necessity measure; Bender’s decomposition
Summary:
In this paper, a necessity measure optimization model of linear programming problems with fuzzy oblique vectors is discussed. It is shown that the problems are reduced to linear fractional programming problems. Utilizing a special structure of the reduced problem, we propose a solution algorithm based on Bender’s decomposition. A numerical example is given.
References:
[1] Inuiguchi M.: Necessity optimization in linear programming problems with interactive fuzzy numbers. In: Proc. 7th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty (H. Noguchi, H. Ishii and M. Inuiguchi, eds.), Awaji Yumebutai ICC, 2004, pp. 9–14
[2] Inuiguchi M., Ramík J.: Possibilistic linear programming: A brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy Sets and Systems 111 (2000), 1, 3–28 MR 1748690 | Zbl 0938.90074
[3] Inuiguchi M., Ramík, J., Tanino T.: Oblique fuzzy vectors and their use in possibilistic linear programming. Fuzzy Sets and Systems 137 (2003), 1, 123–150 MR 1977539 | Zbl 1026.90104
[4] Inuiguchi M., Sakawa M.: A possibilistic linear program is equivalent to a stochastic linear program in a special case. Fuzzy Sets and Systems 76 (1995), 309–318 MR 1365398 | Zbl 0856.90131
[5] Inuiguchi M., Tanino T.: Portfolio selection under independent possibilistic information. Fuzzy Sets and Systems 115 (2000), 1, 83–92 MR 1776308 | Zbl 0982.91028
[6] Inuiguchi M., Tanino T.: Possibilistic linear programming with fuzzy if-then rule coefficients. Fuzzy Optimization and Decision Making 1 (2002), 1, 65–91 DOI 10.1023/A:1013727809532 | MR 1922355 | Zbl 1056.90142
[7] Inuiguchi M., Tanino T.: Fuzzy linear programming with interactive uncertain parameters. Reliable Computing 10 (2004), 5, 357–367 DOI 10.1023/B:REOM.0000032118.34323.f2 | MR 2063296 | Zbl 1048.65062
[8] Lasdon L. S.: Optimization Theory for Large Systems. Macmillan, New York 1970 MR 0337317 | Zbl 0991.90001
[9] Rommelfanger H., Kresztfalvi T.: Multicriteria fuzzy optimization based on Yager’s parameterized t-norm. Found. Computing and Decision Sciences 16 (1991), 2, 99–110 MR 1186955
[10] Zimmermann H.-J.: Applications of fuzzy set theory to mathematical programming. Inform. Sci. 36 (1985), 1–2, 29–58 DOI 10.1016/0020-0255(85)90025-8 | MR 0813764 | Zbl 0578.90095
Partner of
EuDML logo