Previous |  Up |  Next

Article

Keywords:
interval linear regression analysis; least squares method; minimum
Summary:
In this paper, we extend the traditional linear regression methods to the (numerical input)-(interval output) data case assuming both the observation/measurement error and the indeterminacy of the input-output relationship. We propose three different models based on three different assumptions of interval output data. In each model, the errors are defined as intervals by solving the interval equation representing the relationship among the interval output, the interval function and the interval error. We formalize the estimation problem of parameters of the interval function so as to minimize the sum of square/absolute interval errors. Introducing suitable interpretation of minimization of an interval function, each estimation problem is well-formulated as a quadratic or linear programming problem. It is shown that the proposed methods have close relation to both traditional and interval linear regression methods which are formulated in different manners.
References:
[1] Aubin J.-P., Frankowska H.: Set-Valued Analysis. Birkhäuser, Boston 1990 MR 1048347 | Zbl 1168.49014
[2] Diamond P.: Fuzzy least squares. Inform. Sci. 46 (1988), 141–157 DOI 10.1016/0020-0255(88)90047-3 | MR 0964762 | Zbl 0663.65150
[3] Diamond P., Tanaka H.: Fuzzy regression analysis. In: Fuzzy Sets in Decision Analysis, Operations Research and Statistics (R. Słowinski, ed.), Kluwer, Boston 1988, pp. 349–387 MR 1672373
[4] Dubois D., Prade H.: Fuzzy numbers: An overview. In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic (J. C. Bezdek, ed.), CRC Press, Boca Raton 1987, pp. 3–39 MR 0910312 | Zbl 0663.94028
[5] Huber P. J.: Robust statistics. Ann. Math. Statist. 43 (1972), 1041–1067 MR 0314180 | Zbl 0254.62023
[6] Ignizio J. P.: Linear Programming in Single- & Multiple-Objective Systems. Prentice-Hall, Englewood Cliffs, NJ 1982 Zbl 0484.90068
[7] Inuiguchi M., Kume Y.: Goal programming problems with interval coefficients and target ontervals. European J. Oper. Res. 52 (1991), 345–360 DOI 10.1016/0377-2217(91)90169-V
[8] Moore R. E.: Methods and Applications of Interval Analysis. SIAM, Philadelphia 1979 MR 0551212 | Zbl 0417.65022
[9] Shape W. F.: Mean-absolute-deviation characteristic lines for securities and portfolios. Management Sci. 18 (1971), 2, B1–B13 DOI 10.1287/mnsc.18.2.B1
[10] Tanaka H., Hayashi, I., Nagasaka K.: Interval regression analysis by possibilistic measures (in Japanese). Japan. J. Behaviormetrics 16 (1988), 1, 1–7 DOI 10.2333/jbhmk.16.1
[11] Tanaka H., Lee H.: Interval regression analysis by quadratic programming approach. IEEE Trans. Fuzzy Systems 6 (1998), 4, 473–481 DOI 10.1109/91.728436
[12] Tanaka H., Uejima, S., Asai K.: Linear regression analysis with fuzzy model. IEEE Trans. Systems Man Cybernet. 12 (1982), 903–907 DOI 10.1109/TSMC.1982.4308925 | Zbl 0501.90060
[13] Tanaka H., Watada J.: Possibilistic linear systems and their application to the linear regression model. Fuzzy Sets and Systems 27 (1988), 275–289 DOI 10.1016/0165-0114(88)90054-1 | MR 0956375 | Zbl 0662.93066
Partner of
EuDML logo