Previous |  Up |  Next

Article

Title: Only a level set of a control Lyapunov function for homogeneous systems (English)
Author: Jerbi, Hamadi
Author: Kharrat, Thouraya
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 41
Issue: 5
Year: 2005
Pages: [593]-600
Summary lang: English
.
Category: math
.
Summary: In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system. (English)
Keyword: homogeneous systems
Keyword: homogeneous feedbacks
Keyword: stabilizability
Keyword: sub manifold
Keyword: vector field
MSC: 93D05
MSC: 93D15
idZBL: Zbl 1249.93147
idMR: MR2192425
.
Date available: 2009-09-24T20:11:43Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135680
.
Reference: [1] Artstein Z.: Stabilization with relaxed controls.Nonlinear. Anal. 7 (1983), 1163–1173 Zbl 0525.93053, MR 0721403, 10.1016/0362-546X(83)90049-4
Reference: [2] Faubourg L., Pomet J. P.: Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems.ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 293–311 Zbl 0959.93046, MR 1765428, 10.1051/cocv:2000112
Reference: [3] Goodman R. W.: Nilpotent Lie Groups: Structure and Applications to Analysis.(Lecture Notes in Mathematics 562.) Springer–Verlag, Berlin 1976 Zbl 0347.22001, MR 0442149
Reference: [4] Hermes H.: Nilpotent and high-order approximations of vector field systems.SIAM Rev. 33 (1991), 238–264 Zbl 0733.93062, MR 1108590, 10.1137/1033050
Reference: [5] Jerbi H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems.Systems Control Lett. 45 (2002), 173–178 Zbl 0987.93060, MR 2072233, 10.1016/S0167-6911(01)00172-4
Reference: [6] Kawski M.: Homogeneous stabilizing feedback laws.Control Theory and Advanced Technology 6 (1990), 497–516 MR 1092775
Reference: [7] Closkey R. Mac, Murray M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback.IEEE Trans. Automat. Control 42 (1997), 614–628 MR 1454204, 10.1109/9.580865
Reference: [8] Closkey R. Mac, Morin P.: Time-varying homogeneous feedback: design tools for exponential stabilization of systems with drift.Internat. J. Control 71 (1998), 837–869 MR 1658500, 10.1080/002071798221605
Reference: [9] Sontag E. D.: A “universal” construction of Artstein’s Theorem on nonlinear stabilization.Systems Control Lett. 13 (1989) Zbl 0684.93063, MR 1014237, 10.1016/0167-6911(89)90028-5
Reference: [10] Tsinias J.: Stabilization of affine in control nonlinear systems.Nonlinear Anal. 12 (1988), 1238–1296 Zbl 0662.93055, MR 0969506, 10.1016/0362-546X(88)90060-0
Reference: [11] Tsinias J.: Sufficient Lyapunov like conditions for stabilization.Math. Control Signals Systems 2 (1989), 343–357 Zbl 0688.93048, MR 1015672, 10.1007/BF02551276
.

Files

Files Size Format View
Kybernetika_41-2005-5_3.pdf 961.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo