Previous |  Up |  Next

Article

Keywords:
homogeneous systems; homogeneous feedbacks; stabilizability; sub manifold; vector field
Summary:
In this paper, we generalize Artstein’s theorem and we derive sufficient conditions for stabilization of single-input homogeneous systems by means of an homogeneous feedback law and we treat an application for a bilinear system.
References:
[1] Artstein Z.: Stabilization with relaxed controls. Nonlinear. Anal. 7 (1983), 1163–1173 DOI 10.1016/0362-546X(83)90049-4 | MR 0721403 | Zbl 0525.93053
[2] Faubourg L., Pomet J. P.: Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems. ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 293–311 DOI 10.1051/cocv:2000112 | MR 1765428 | Zbl 0959.93046
[3] Goodman R. W.: Nilpotent Lie Groups: Structure and Applications to Analysis. (Lecture Notes in Mathematics 562.) Springer–Verlag, Berlin 1976 MR 0442149 | Zbl 0347.22001
[4] Hermes H.: Nilpotent and high-order approximations of vector field systems. SIAM Rev. 33 (1991), 238–264 DOI 10.1137/1033050 | MR 1108590 | Zbl 0733.93062
[5] Jerbi H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Lett. 45 (2002), 173–178 DOI 10.1016/S0167-6911(01)00172-4 | MR 2072233 | Zbl 0987.93060
[6] Kawski M.: Homogeneous stabilizing feedback laws. Control Theory and Advanced Technology 6 (1990), 497–516 MR 1092775
[7] Closkey R. Mac, Murray M.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Control 42 (1997), 614–628 DOI 10.1109/9.580865 | MR 1454204
[8] Closkey R. Mac, Morin P.: Time-varying homogeneous feedback: design tools for exponential stabilization of systems with drift. Internat. J. Control 71 (1998), 837–869 DOI 10.1080/002071798221605 | MR 1658500
[9] Sontag E. D.: A “universal” construction of Artstein’s Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989) DOI 10.1016/0167-6911(89)90028-5 | MR 1014237 | Zbl 0684.93063
[10] Tsinias J.: Stabilization of affine in control nonlinear systems. Nonlinear Anal. 12 (1988), 1238–1296 DOI 10.1016/0362-546X(88)90060-0 | MR 0969506 | Zbl 0662.93055
[11] Tsinias J.: Sufficient Lyapunov like conditions for stabilization. Math. Control Signals Systems 2 (1989), 343–357 DOI 10.1007/BF02551276 | MR 1015672 | Zbl 0688.93048
Partner of
EuDML logo